
HPCC / Spark Connector
Boca Raton Documentation Team

HPCC / Spark Connector

HPCC / Spark Connector
Boca Raton Documentation Team
Copyright © 2023 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version
Number in the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2023 Version 9.0.2-1

© 2023 HPCC Systems®. All rights reserved
2

HPCC / Spark Connector

The Spark HPCC Systems Connector ... 4
Overview .. 4
Primary Classes ... 6
Additional Classes of interest .. 9
Examples ... 10

© 2023 HPCC Systems®. All rights reserved
3

HPCC / Spark Connector
The Spark HPCC Systems Connector

The Spark HPCC Systems Connector

Overview
The Spark-HPCCSystems Distributed Connector is a Java library that facilitates access from a Spark cluster
to data stored on an HPCC Systems cluster. The connector library employs the standard HPCC Systems
remote file read facility to read data from either sequential or indexed HPCC datasets.

The data on an HPCC cluster is partitioned horizontally, with data on each cluster node. Once configured,
the HPCC data is available for reading in parallel by the Spark cluster.

In the GitHub repository (https://github.com/hpcc-systems/Spark-HPCC) you can find the source code and
examples. There are several artifacts in the DataAccess/src/main/java folder of primary interest. The org.h-
pccsystems.spark.HpccFile class is the façade of a file on an HPCC Cluster. The org.hpccsystems.spark.H-
pccRDD is a resilient distributed dataset derived from the data on the HPCC Cluster and is created by
the org.hpccsystems.spark.HpccFile.getRDD(…) method. The HpccFile class supports loading data to con-
struct a Dataset<Row> object for the Spark interface. This will first load the data into an RDD<Row> and
then convert this RDD to a Dataset<Row> through internal Spark mechanisms.

There are several additional artifacts of some interest. The org.hpccsystems.spark.ColumnPruner class is
provided to enable retrieving only the columns of interest from the HPCC Cluster. The targetCluster artifact
allows you to specify the HPCC cluster on which the target file exists. The org.hpccsystems.spark.thor.File-
Filter class is provided to facilitate filtering records of interest from the HPCC Cluster.

The git repository includes two examples under the Examples/src/main/scala folder. The examples (org.h-
pccsystems.spark_examples.Dataframe_Iris_LR and org.hpccsystems.spark_examples.Iris_LR) are Scala
Objects with a main() function. Both examples use the classic Iris dataset. The dataset can be obtained
from a variety of sources, including the HPCC-Systems/ecl-ml repository. IrisDs.ecl (can be found under
the ML/Tests/Explanatory folder: https://github.com/hpcc-systems/Spark-HPCC/blob/master/Examples/src/
main/ecl/IrisDS.ecl) can be executed to generate the Iris dataset in HPCC. A walk-through of the examples
is provided in the Examples section.

The Spark-HPCCSystems Distributed Connector also supports PySpark. It uses the same classes/API as
Java does.

As is common in Java client communication over TLS, Spark-HPCC connectors targeting an
HPCC cluster over TLS will need to import the appropriate certificates to local Java keystore.

*One way to accomplish this is to use the keytool packaged with Java installations. Refer to
the keytool documentation for usage.

Spark Integration
The HPCC integrated Spark plugin is no longer supported as of version 9.0.0 in favor of stand-alone user-
managed Spark clusters linked to the HPCC platform using the Spark-HPCC connector.

© 2023 HPCC Systems®. All rights reserved
4

HPCC / Spark Connector
The Spark HPCC Systems Connector

Special considerations

Unsigned Value Overflow

Java does not support an unsigned integer type so reading UNSIGNED8 values from HPCC data can cause
an integer overflow in Java. UNSIGNED8 values are often used as unique identifiers in datasets, in which
case overflowing would be acceptable as the overflowed value will still be unique.

The Spark-HPCC connector allows unsigned values to overflow in Java and will not report a exception. The
caller is responsible for interpreting the value based on the recdef isunsigned flag.

© 2023 HPCC Systems®. All rights reserved
5

HPCC / Spark Connector
The Spark HPCC Systems Connector

Primary Classes
The HpccFile class and the HpccRDD classes are discussed in more detail below. These are the primary
classes used to access data from an HPCC Cluster. The HpccFile class supports loading data to construct
a Dataset<Row> object for the Spark interface. This will first load the data into an RDD<Row> and then
convert this RDD to a Dataset<Row> through internal Spark mechanisms.

The org.hpccsystems.spark.HpccFile class has several constructors. All of the constructors take information
about the Cluster and the name of the dataset of interest. The JAPI WS-Client classes are used to access
file detail information. A definition used to select the columns to be returned and a definition to select the
rows to be returned could also be supplied. These are discussed in the Additional Classes of Interest section
below. The class has two methods of primary interest: the getRDD(…) method and the getDataframe(…)
method, which are illustrated in the Example section.

The HpccFile class getRecordDefinition() method can be used to retrieve a definition of the file. The get-
FileParts() method can be used to see how the file is partitioned on the HPCC Cluster. These methods
return the same information as can be found on the ECL Watch dataset details page DEF tab and the
PARTS tab respectively.

The org.hpccsystems.spark.HpccRDD class extends the RDD<Record> templated class. The class
employs the org.hpccsystems.spark.HpccPart class for the Spark partitions. The org.hpccsystems.s-
park.Record class is used as the container for the fields from the HPCC Cluster. The Record class can
create a Row instance with a schema.

The HpccRDD HpccPart partition objects each read blocks of data from the HPCC Cluster independently
from each other. The initial read fetches the first block of data, requests the second block of data, and
returns the first record. When the block is exhausted, the next block should be available on the socket and
new read request is issued.

The HpccFileWriter is another primary class used for writing data to an HPCC Cluster. It has a single
constructor with the following signature:

public HpccFileWriter(String connectionString, String user, String pass) throws Exception {

The first parameter connectionString contains the same information as HpccFile. It should be in the following
format: {http|https}://{ECLWATCHHOST}:{ECLWATCHPORT}

The constructor will attempt to connect to HPCC. This connection will then be used for any subsequent
calls to saveToHPCC.

public long saveToHPCC(SparkContext sc, RDD<Row> scalaRDD, String clusterName,
 String fileName) throws Exception {

The saveToHPCC method only supports RDD<row> types. You may need to modify your data representa-
tion to use this functionality. However, this data representation is what is used by Spark SQL and by HPCC.
This is only supported by writing in a co-located setup. Thus Spark and HPCC must be installed on the
same nodes. Reading only supports reading data in from a remote HPCC cluster.

The clusterName as used in the above case is the desired cluster to write data to, for example, the "mythor"
Thor cluster. Currently there is only support for writing to Thor clusters. Writing to a Roxie cluster is not
supported and will return an exception. The filename as used in the above example is in the HPCC format,
for example: "~example::text".

Internally the saveToHPCC method will Spawn multiple Spark jobs. Currently, this spawns two jobs. The
first job maps the location of partitions in the Spark cluster so it can provide this information to HPCC. The
second job does the actual writing of files. There are also some calls internally to ESP to handle things

© 2023 HPCC Systems®. All rights reserved
6

HPCC / Spark Connector
The Spark HPCC Systems Connector

like starting the writing process by calling DFUCreateFile and publishing the file once it has been written
by calling DFUPublishFile.

© 2023 HPCC Systems®. All rights reserved
7

HPCC / Spark Connector
The Spark HPCC Systems Connector

Using the Spark Datasource API to Read and Write
Example Python code:

Connect to HPCC and read a file
df = spark.read.load(format="hpcc",
 host="127.0.0.1:8010",
 password="",
 username="",
 limitPerFilePart=100,
 # Limit the number of rows to read from each file part
 projectList="field1, field2, field3.childField1",
 # Comma separated list of columns to read
 fileAccessTimeout=240,
 path="example::file")
Write the file back to HPCC
df.write.save(format="hpcc",
 mode="overwrite",
 # Left blank or not specified results in an error if the file exists
 host="127.0.0.1:8010",
 password="",
 username="",
 cluster="mythor",
 path="example::file")

Example Scala code:

// Read a file from HPCC
val dataframe = spark.read.format("hpcc")
 .option("host","127.0.0.1:8010")
 .option("password", "")
 .option("username", "")
 .option("limitPerFilePart",100)
 .option("fileAccessTimeout",240)
 .option("projectList","field1, field2, field3.childField")
 .load("example::file")
// Write the dataset back
 dataframe.write.mode("overwrite")
 .format("hpcc")
 .option("host","127.0.0.1:8010")
 .option("password", "")
 .option("username", "")
 .option("cluster","mythor")
 .save("example::file")

Example R code:

df <- read.df(source = "hpcc",
 host = "127.0.0.1:8010",
 path = "example::file",
 password = "",
 username = "",
 limitPerFilePart = 100,
 fileAccessTimeout = 240,
 projectList = "field1, field2, field3.childField")
write.df(df, source = "hpcc",
 host = "127.0.0.1:8010",
 cluster = "mythor",
 path = "example::file",
 mode = "overwrite",
 password = "",
 username = "",
 fileAccessTimeout = 240)

© 2023 HPCC Systems®. All rights reserved
8

HPCC / Spark Connector
The Spark HPCC Systems Connector

Additional Classes of interest
The main classes of interest for this section are column pruning and file filtering. In addition there is a helper
class to remap IP information when required, and this is also discussed below.

The column selection information is provided as a string to the org.hpccsystems.spark.ColumnPruner object.
The string is a list of comma separated field names. A field of interest could contain a row or child dataset, and
the dotted name notation is used to support the selection of individual child fields. The ColumnPruner parses
the string into a root TargetColumn class instance which holds the top level target columns. A TargetColumn
can be a simple field or can be a child dataset and so be a root object for the child record layout.

The row filter is implemented in the org.hpccsystems.spark.thor.FileFilter class. A FileFilter instance is
constricted from an array of org.hpccsystems.spark.thor.FieldFilter objects. Each FieldFilter instance is
composed of a field name (in doted notation for compound names) and an array of org.hpccsystems.s-
park.thor.FieldFilterRange objects. Each FieldFilterRange instance can be an open or closed interval or a
single value. The record is selected when at least one FieldFilterRange matches for each of the FieldFilter
instances in the array.

The FieldFilterRange values may be either strings or numbers. There are methods provided to construct
the following range tests: equals, not equals, less than, less than or equals, greater than, and a greater than
or equals. In addition, a set inclusion test is supported for strings. If the file is an index, the filter fields that
are key fields are used for an index lookup. Any filter field unmentioned is treated as wild.

The usual deployment architecture for HPCC Clusters consists of a collection of nodes on a network. The
file management information includes the IP addresses of the nodes that hold the partitions of the file. The
Spark-HPCC connector classes use these IP addresses to establish socket connections for the remote
read. An HPCC Cluster may be deployed as a virtual cluster with private IP addresses. This works for the
cluster components because they are all on the same private LAN. However, the Spark cluster nodes might
not be on that same LAN. In this case, the org.hpccsystems.spark.RemapInfo class is used to define the
information needed to change the addressing. There are two options that can be used. The first option is
that each Thor worker node can be assigned an IP that is visible to the Spark cluster. These addresses
must be a contiguous range. The second option is to assign an IP and a contiguous range of port numbers.
The RemapInfo object is supplied as a parameter.

© 2023 HPCC Systems®. All rights reserved
9

HPCC / Spark Connector
The Spark HPCC Systems Connector

Examples
We will walk through the two examples below utilizing a Spark environment. Additionally, the repository pro-
vides testing programs (in the DataAccess/src/test folder) that can be executed as stand-alone examples.

These test programs are intended to be run from a development IDE such as Eclipse via the Spark-submit
application whereas the examples below are dependent on the Spark shell.

The following examples assume a Spark Shell. You can use the spark-submit command if you intend to
compile and package these examples. To properly connect your spark shell to the Integrated Spark cluster,
provide the following parameters when starting the shell:

bin/spark-shell \
 --master=<spark://{remotesparkhost-IP}:{sparkport}> --conf="spark.driver.host={localhost-ip}"

Iris_LR
This example assumes that you have Spark Shell running. The next step is to establish your HpccFile and
your RDD for that file. You need the name of the file, the protocol (http or https), the name or IP of the ESP,
the port for the ESP (usually 8010), and your user account and password. The sc value is the SparkContext
object provided by the shell.

 val espcon = new Connection("http", "myeclwatchhost", "8010");
 espcon.setUserName("myuser");
 espcon.setPassword("mypass");
 val file = new HpccFile("myfile",espcon);

Now we have an RDD of the data. Nothing has actually happened at this point because Spark performs
lazy evaluation and there is nothing yet to trigger an evaluation.

The Spark MLLib has a Logistic Regression package. The MLLib Logistic Regression expects that the data
will be provided as Labeled Point formatted records. This is common for supervised training implementations
in MLLib. We need column labels, so we make an array of names. We then make a labeled point RDD from
our RDD. This is also just a definition. Finally, we define the Logistic Regression that we want to run. The
column names are the field names in the ECL record definition for the file, including the name “class” which
is the name of the field holding the classification code.

 val names = Array("petal_length","petal_width", "sepal_length",
 "sepal_width")
 var lpRDD = myRDD.makeMLLibLabeledPoint("class", names)
 val lr = new LogisticRegressionWithLBFGS().setNumClasses(3)

The next step is to define the model, which is an action and will cause Spark to evaluate the definitions.

 val iris_model = lr.run(lpRDD)

Now we have a model. We will utilize this model to take our original dataset and use the model to produce
new labels. The correct way to do this is to have randomly sampled some hold out data. We are just going
to use the original dataset because it is easier to show how to use the connector. We then take our original
data and use a map function defined inline to create a new record with our prediction value and the original
classification.

 val predictionAndLabel = lpRDD.map {
 case LabeledPoint(label, features) =>
 val prediction = iris_model.predict(features)
 (prediction, label)
 }

© 2023 HPCC Systems®. All rights reserved
10

HPCC / Spark Connector
The Spark HPCC Systems Connector

The MulticlassMetrics class can now be used to produce a confusion matrix.

 val metrics = new MulticlassMetrics(predictionAndLabel)
 metrics.confusionMatrix

Dataframe_Iris_LR
The Dataframe_Iris_LR is similar to the Iris_LR, except that a Dataframe is used and the new ML Spark
classes are used instead of the old MLLib classes. Since ML is not completely done, we do fall back to an
MLLib class to create our confusion matrix.

Once the Spark shell is brought up, we need our import classes.

 import org.hpccsystems.spark.HpccFile
 import org.apache.spark.sql.Dataset
 import org.apache.spark.ml.feature.VectorAssembler
 import org.apache.spark.ml.classification.LogisticRegression
 import org.apache.spark.mllib.evaluation.MulticlassMetrics

The next step is to establish the HpccFile object and create the Dataframe. The spark value is a SparkSes-
sion object supplied by the shell and is used instead of the SparkContext object.

 val espcon = new Connection("http", "myeclwatchhost", "8010");
 espcon.setUserName("myuser");
 espcon.setPassword("mypass");
 val file = new HpccFile("myfile",espcon);

The Spark ml Machine Learning classes use different data container classes. In the case of Logistic Re-
gression, we need to transform our data rows into a row with a column named “features” holding the features
and a column named “label” holding the classification label. Recall that our row has “class”, “sepal_width”,
“sepal_length”, “petal_width”, and “petal_length” as the column names. This kind of transformation can be
accomplished with a VectorAssembler class.

 val assembler = new VectorAssembler()
 assembler.setInputCols(Array("petal_length","petal_width",
 "sepal_length", "sepal_width"))
 assembler.setOutputCol("features")
 val iris_fv = assembler.transform(my_df)
 .withColumnRenamed("class", "label")

Now that the data (iris_fv) is ready, we define our model and fit the data.

 val lr = new LogisticRegression()
 val iris_model = lr.fit(iris_fv)

We now want to apply our prediction and evaluate the results. As noted before, we would use a holdout
dataset to perform the evaluation. We are going to be lazy and just use the original data to avoid the sampling
task. We use the transform(…) function for the model to add the prediction. The function adds a column
named “prediction” and defines a new dataset. The new Machine Learning implementation lacks a metrics
capability to produce a confusion matrix, so we will then take our dataset with the prediction column and
create a new RDD with a dataset for a MulticlassMetrics class.

 val with_preds = iris_model.transform(iris_fv)
 val predictionAndLabel = with_preds.rdd.map(
 r => (r.getDouble(r.fieldIndex("prediction")),
 r.getDouble(r.fieldIndex("label"))))
 val metrics = new MulticlassMetrics(predictionAndLabel)
 metrics.confusionMatrix

© 2023 HPCC Systems®. All rights reserved
11

	HPCC / Spark Connector
	Table of Contents
	The Spark HPCC Systems Connector
	Overview
	Spark Integration
	Special considerations
	Unsigned Value Overflow

	Primary Classes
	Using the Spark Datasource API to Read and Write

	Additional Classes of interest
	Examples
	Iris_LR
	Dataframe_Iris_LR

