
HPCC JDBC Driver
Boca Raton Documentation Team

HPCC JDBC Driver

HPCC JDBC Driver
Boca Raton Documentation Team
Copyright © 2022 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2022 Version 8.6.2-1

© 2022 HPCC Systems®. All rights reserved
2

HPCC JDBC Driver

Introduction .. 4
Installation ... 5
Configuration ... 6
Using HPCC as a JDBC data source .. 7

Index Annotations ... 7
Supported SQL ... 9

CALL ... 9
SELECT .. 10
SELECT JOIN .. 12
Supported Aggregate Functions .. 14

Java Example .. 15

© 2022 HPCC Systems®. All rights reserved
3

HPCC JDBC Driver
Introduction

Introduction
Java Database Connectivity (JDBC) is a standard Java API that enables Java applications or client tools that support
JDBC to access data from a presumably SQL-compliant data source via the SQL language.

JDBC makes it possible to write a single database application that can run on different platforms and interact with
different database management systems.

Currently there are JDBC Drivers available for interaction with many popular data sources; now the HPCC platform
is available as a data source.

The HPCC JDBC Driver exposes HPCC logical files as RDB tables.

• HPCC Logical File <-> RDB Table

• HPCC Record Definition Fields <-> RDB Table Columns

• HPCC Published query <-> RDB Stored Procedure

• Provides access to HPCC system data and RDB metadata

• Supports subset of SQL syntax

• Read-only operations supported

• Non-transactional

• Provides means for utilizing HPCC index files for faster reads.

Figure 1. An example SQL Client interface connected to an HPCC Platform with the JDBC
driver

© 2022 HPCC Systems®. All rights reserved
4

HPCC JDBC Driver
Installation

Installation
The HPCC JDBC driver is distributed in a self-contained JAVA jar file.

Follow the instructions for your SQL client for installation.

To utilize your HPCC platform, use the configuration settings in the next section. The manner in which you define
these settings is dependent on your SQL client.

The driver's full class path is:

org.hpccsystems.jdbcdriver.HPCCDriver

Note: WsSQL must be installed on the target HPCC Platform to utilize a JDBC connection. See http://hpccsys-
tems.com/permlink/wssql for details.

© 2022 HPCC Systems®. All rights reserved
5

HPCC JDBC Driver
Configuration

Configuration
The HPCC JDBC driver supports the following configuration attributes:

Property Description Default Value Req.

ServerAddress Target HPCC ESP Address (used to contact WsSQL). “localhost” Yes

WsSQLPort: WsSQL port (WsSQL is a web service which must be in-
stalled with the HPCC platform. It typically runs on port
8015).

8015 Yes

WsECLWatchAddress Target HPCC WsECLWatch address ServerAddress
Value

No

WsECLWatchPort Target HPCC WsECLWatch port 8010 No

username User name on Target HPCC, if needed “” No

password Password on Target HPCC, if needed “” No

PageSize Max Number of HPCC files or HPCC published queries
reported as result of GetTables, or GetProcs

100 No

ConnectTimeoutMilli Timeout value to establish connection to HPCC (in mil-
liseconds)

1000 No

ReadTimeoutMilli HPCC Connection read timeout value (in milliseconds) 1500 No

EclResultLimit Max result records returned (use ALL to return all
records)

100 No

LazyLoad Fetch HPCC file and query metadata on-demand (not at
connect time)

“true” No

TargetCluster ECLDirect target cluster “hthor” No

QuerySet Target published query (stored procedure) QuerySet “hthor” No

TraceToFile When true, tracing is directed to file ./HPCCJDBC.log,
otherwise trace is sent to standard output (stdout)

"false" No

TraceLevel Trace Logging level, as defined in java.util.logging.lev-
el. Valid values: ALL, SEVERE, WARNING, INFO,
FINEST, OFF

INFO No

These configuration settings are used when creating an HPCC JDBC connection.

They can be passed to the JDBC driver using the JDBC connection URL or as part of the connection properties object.
When passed through the connection URL, the values must be URL-encoded.

The connection URL syntax is as follows:

jdbc:hpcc[;urlencodedkey=urlencodedvalue]*

Note: The jdbc:hpcc prefix is required.

© 2022 HPCC Systems®. All rights reserved
6

HPCC JDBC Driver
Using HPCC as a JDBC data source

Using HPCC as a JDBC data source
Once connected, the HPCC JDBC driver will process submitted SQL statements and generate dynamic ECL code. The
code is submitted to and executed by your HPCC Platform. The resultset is returned to your application or SQL client.

Note: The HPCC JDBC driver only supports files which contain the record definition in the logical file’s
metadata. Sprayed files do not contain this metadata. This metadata exists on any file or index which is
written to the HPCC Distributed File System. Sprayed data files typically undergo some processing and an
OUTPUT of the transformed data to disk before use, so this should not interfere with the driver's usefulness.

In addition, you can utilize indexes on the HPCC in one of two ways:

1. Provide SQL hints to tell driver to use a specific index for your query.

For example:

USEINDEX(TutorialPersonByZipIndex)

2. Specify the related indexes in the HPCC logical file description.

Index Annotations
The JDBC driver attempts to perform index based reads whenever possible. However, in order to take advantage of
index reads, the target HPCC files need to be annotated with the pertinent index file names. This is accomplished by
adding the following key/value entry on the file’s description using ECL Watch.

From a logical file’s details page, enter the information in the Description entry box, then press the Save Description
button.

This information is used by the driver to decide if an index fetch is possible for a query on the base file.

On source file:
XDBC:RelIndexes= [fullLogicalFilename1; fullLogicalFilename2]

Example:

XDBC:RelIndexes=[tutorial::yn::peoplebyzipindex;
 tutorial::yn::peoplebyzipindex2;
 tutorial::yn::peoplebyzipindex3]

In this example, the source file has three indexes available.

On the index file:
XDBC:PosField=[indexPositionFieldName]

Example:

XDBC:PosField=[fpos]

© 2022 HPCC Systems®. All rights reserved
7

HPCC JDBC Driver
Using HPCC as a JDBC data source

The FilePosition field (fpos) can have any name, so it must be specified in the metadata so the driver knows which
field is the fileposition.

Simply enter the information in the description entry box, then press the Save Description button.

Note: You should enter this information BEFORE publishing any query using the data file or indexes. Published
queries lock the file and would prevent editing the metadata.

© 2022 HPCC Systems®. All rights reserved
8

HPCC JDBC Driver
Supported SQL

Supported SQL

CALL
Call queryname ([param list])

queryName The published query name or alias

paramList The parameters exposed by the published query (comma-separated)

Call executes a published ECL query as if it were a stored procedure.

Example:

Call SearchPeopleByZipService (‘33024’)

© 2022 HPCC Systems®. All rights reserved
9

HPCC JDBC Driver
Supported SQL

SELECT
select [distinct] colummList from tableList [USE INDEX(indexFileName | 0)]

[where logicalExpression] [group by columnList1] [having logicalExpression2]

[order by columnList1 [asc | desc]] [LIMIT limitNumber]

NOTE: Identifiers can be unquoted or within double quotes, literal string values must be single quoted.

columnList columnreference1[,columnreference2,columnreference3,...,columnreferencen]

The column(s) to return (comma-separated list). In addition, these aggregate functions
are supported : COUNT, SUM, MIN, MAX, and AVG. These work in a similar manner
as their ECL counterparts.

columnreference [tablename.]columnname[[AS] alias]

distinct [distinct] col1, col2,... coln

The result set will only contain distinct (unique) values.

tableList tableref1[,tableref2,tableref3,...,tablerefn]

One or more tables, separated by commas.

NOTE: A table list with multiple tables creates an (one or more) implicit inner join
using the where clause logical expression as the join condition which must contain an
equality condition.

tableref tableName[[AS] alias]

The Name of the table as referenced, optionally defining its alias.

alias The alias used to refer to the corresponding table or field reference.

logicalExpression Logical expression based on standard SQL filtering syntax. Compound operators such
as NOT IN or IS NULL must be in ALL CAPS or all lower case and can have one and
only one space between the words. (NOT IN, not in, IS NULL, is null, etc.)

BOOLEAN Only supports True or False, do not use Y, N, 0, or 1.

Valid operators:

= Equal (e.g., age=33)

<> Not equal (e.g., age <>33)

> Greater than (e.g., age >55)

< Less than (e.g., age < 18)

>= Greater than or equal (e.g., age >=21)

<= Less than or equal (e.g., age <=21)

IN(value1,value2,...,valuen) where values are comma separated homogeneous types.

© 2022 HPCC Systems®. All rights reserved
10

HPCC JDBC Driver
Supported SQL

NOT IN(value1,value2,...,valuen) where values are comma separated homogeneous
types.

IS NULL

limitNumber The number of rows to return. This overrides the driver's configuration attribute
(EclResultLimit) but cannot be set to ALL.

1Aliasing not supported
2Can only contain references to aggregate functions if used with having clause.

Aggregate functions can only be expressed in logicalExpressions by using Group by
and having

Examples:

Select * from tableList where Sum(F1 > 100) /* is NOT SUPPORTED */

Select * from tableList Group byF1 Haveing Sum (F1 > 100) /* IS SUPPORTED */

Example:

Select fname, lname, state from TutorialPerson where
 state=’FL’ OR (lname='Smith' and fname='Joe')
//returns data that looks like this:
John Doe FL
Jim Smith FL
Jane Row FL
Joe Smith CA

Select fname, lname, state from TutorialPerson where state=’FL’ AND lname <> ‘Smith’
//returns data that looks like this:
John Doe FL
Jane Row FL

The driver supports SQL index hints, which gives the SQL user the option to specify the most appropriate HPCC index
for the current SQL query. This also allows you to disable the use of an index.

select columnList from tableName USE INDEX(hpcc::index::file::name) where logicalExprssions

USE INDEX(0) forces the system to avoid seeking an index for the current query.

Example:

Select fname, lname, zip, state from TutorialPerson
USEINDEX(TutorialPersonByZipIndex)where zip=’33024’

//returns data that looks like this:
John Doe FL 33024
Jim Smith FL 33024
Jane Row FL 33024

© 2022 HPCC Systems®. All rights reserved
11

HPCC JDBC Driver
Supported SQL

SELECT JOIN
select colummList from tableName [as alias]

[<outer | inner > JOIN join TableName [as alias] on joinCondition]

[USE INDEX(indexFileName | 0)]

[where logicalExpression] [group by fieldName]

[order by columnNames [asc | desc]] [LIMIT limitNumber]

columnList columnreference1[,columnreference2,columnreference3,...,columnreferencen]

The column(s) to return (comma-separated list). In addition, these aggregate functions
are supported : COUNT, SUM, MIN, MAX, and AVG. These work in a similar manner
as their ECL counterparts.

columnreference [tablename.]columnname[[AS] alias]

distinct [distinct] col1, col2,... coln

The result set will only contain distinct (unique) values.

alias The alias used to refer to the corresponding table or field reference.

outer | inner The type of JOIN to use.

joinTableName The JOIN file to use.

joinCondition Specifies the relationship between columns in the joined tables using logical expres-
sion.

logicalExpression Logical expression based on standard SQL filtering syntax. Compound operators such
as NOT IN or IS NULL must be in ALL CAPS or all lower case and can have one and
only one space between the words. (NOT IN, not in, IS NULL, is null, etc.)

BOOLEAN Only supports True or False, do not use Y, N, 0, or 1.

Valid operators:

= Equal (e.g., age=33)

<> Not equal (e.g., age <>33)

> Greater than (e.g., age >55)

< Less than (e.g., age < 18)

>= Greater than or equal (e.g., age >=21)

<= Less than or equal (e.g., age <=21)

IN(value1,value2,...,valuen) where values are comma separated homogeneous types.

NOT IN(value1,value2,...,valuen) where values are comma separated homogeneous
types.

© 2022 HPCC Systems®. All rights reserved
12

HPCC JDBC Driver
Supported SQL

IS NULL

limitNumber Optional. The number of rows to return. This overrides the driver's configuration at-
tribute (EclResultLimit) but cannot be set to ALL.

1Aliasing not supported
2Can only contain references to aggregate functions if used with having clause.

Aggregate functions can only be expressed in logicalExpressions by using Group by
and having

Examples:

Select * from tableList where Sum(F1 > 100) /* is NOT SUPPORTED */

Select * from tableList Group byF1 Having Sum (F1 > 100) /* IS SUPPORTED */

Example:

Select t1.personname, t2.address
 from persontable as t1 inner join addresstable as t2
 on (t1.personid = t2.personid AND
 (t1.firstname = 'jim' AND
 t1.lastname = 'smith'))

The JDBC driver does not convert parameter list or column list values to string literals.

String values should be single quote encapsulated. Field identifier can be left unquoted or double quoted.

For example, the table persons has columns Firstname(String) and Zip (numeric)

Select Firstname from persons where Firstname = ‘Jim’ and zip > 33445 /* works */

Select Firstname from persons where Firstname = ‘Jim’ and "zip" > 33445 /* also works */

Select Firstname from persons where Firstname = Jim and zip > 33445 /* doesn’t work */

Select Firstname from persons where Firstname = ‘Jim’ and zip > ‘33445’ /* doesn’t work */

© 2022 HPCC Systems®. All rights reserved
13

HPCC JDBC Driver
Supported SQL

Supported Aggregate Functions
COUNT([DISTINCT]columnName)

DISTINCT(columnName)

SUM(columnName)

MIN(columnName)

MAX(columnName)

AVG(columnName)

These aggregate functions are supported. They behave as their ECL counterparts. See the ECL Language Reference
for details.

COUNT Counts the occurrences of columnName in the result, always an integer.

DISTINCT Returns only distinct values of columnName in the result, output type is dependent on
input type.

SUM Returns the sum of the values of columnName in the result, output type is dependent
on input type.

MIN Returns the minimum value for of columnName in the result, output type is dependent
on input type.

MAX Returns the minimum value for of columnName in the result, output type is dependent
on input type.

AVG Returns the average of the values of columnName in the result, always a real number.

columnName The column to aggregate.

Example:

Select fname, lname, state, COUNT(zip) from TutorialPerson where zip=’33024’

Supported String Modifiers
UPPER(columnName)

LOWER(columnName)

UPPER Returns with all lower case characters converted to upper case.

LOWER Returns with all upper case characters converted to lower case.

columnName The column to aggregate

© 2022 HPCC Systems®. All rights reserved
14

HPCC JDBC Driver
Java Example

Java Example
/* Obtain instance of JDBC Driver */
Driver jdbcdriver = DriverManager.getDriver("jdbc:hpcc");

/* Establish Connection */

HPCCConnection connection = null;
 try
 {

/*populate JAVA properties object with pertinent connection options */
 Properties connprops = new Properties();
 connprops.put("ServerAddress", "192.168.124.128");

/*or create JDBC connection url string with pertinent connection options*/
/* the connection values must be URL-encoded */
 String jdbcurl = "jdbc:hpcc;ServerAddress=HTTP%3A%2F%2F192.168.124.128";

/*provide all necessary connection properties either by URL, or props object */
 connection = (HPCCConnection) driver.connect(jdbcurl, connprops);
 }

 catch (Exception e) { System.out.println("Error");}
/* create HPCCStatement object for single use SQL query execution */

 HPCCStatement stmt = (HPCCStatement) connection.createStatement();

/* Create your SQL query */
 String mysql = "select * from tablename as mytab limit 10";

/* Execute your SQL query */
 HPCCResultSet res1 = (HPCCResultSet) stmt.executeQuery(mysql);

/*Do something with your results */
 printOutResultSet(res1);

/* Or create a prepared statement for multiple execution and parameterization */
 String myprepsql = "select * from persons_table persons where zip= ? limit 100";
 HPCCPreparedStatement prepstmt =
(HPCCPreparedStatement)createPrepStatement(connection, myprepsql);

/* provide parameter values and execute */
 for (int i = 33445; i < 33448; i++)
 {
 prepstmt.clearParameters();
 prepstmt.setString(1, "'" + Integer.toString(i, 10) + "'");
 HPCCResultSet qrs = (HPCCResultSet) ((HPCCPreparedStatement) prepstmt).executeQuery();

/*Do something with your results */
 printOutResultSet(qrs);
 }

More code samples are available from:

https://github.com/hpcc-systems/hpcc-jdbc/tree/master/src/test/java/org/hpccsystems/jdbcdriver/tests

© 2022 HPCC Systems®. All rights reserved
15

	HPCC JDBC Driver
	Table of Contents
	Introduction
	Installation
	Configuration
	Using HPCC as a JDBC data source
	Index Annotations
	On source file:
	On the index file:

	Supported SQL
	CALL
	SELECT
	SELECT JOIN
	Supported Aggregate Functions
	Supported String Modifiers

	Java Example

