Containerized HPCC Systems®
Platform

Boca Raton Documentation Team

o, .
o &
_"'. 2
&

HPCC SYSTEMS®

Containerized HPCC Systems® Platform

Containerized HPCC Systems® Platform

Boca Raton Documentation Team
Copyright © 2022 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document viaemail to <docf eedback@pccsyst ens. con

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst 1ogo are registered trademarks of Reed Elsevier Properties Inc., used under license.
HPCC &/stems® isaregistered trademark of LexisNexis Risk Data Management Inc.
Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2022 Version 8.6.12-1

© 2022 HPCC Systems®. All rights reserved
2

Containerized HPCC Systems® Platform

ContaiNENZEN HPCC OVEIVIEW ... iieiiiieeeeii et e ettt e e e e e e et s e e e et s e e e et n e e e et teaeeatneeeastnaeeeeannss 4
Bare-MeELal VS CONMLAINEISiiiiiii ettt e et e et e et e e et s e e e et e e e e et e e e e et e e e e et neeeata e e e eatanaeeesennss 5
Local Deployment (Development and TESHING)vuuivreerinieiiiiee e e e e e e e e e e e et e e et e e et eeanaeeateesanaeranees 7
1= = 0 (811 == P 7
P o o T = 001 1 (o Y/ 7
S - W0 L S = o PP 8
USE the defallt SYSIBIM ..uiii e e e e e e e e e e e e e e e e a s 10
Terminate (DeCOMMISSION) the SYSEEMu.iii e e e e et e e e e e 11
I 0= = PP 12
Persistent Storage for a Local DEPIOYMENTiiiiiiiii e e e e e e 12
Import; Storage Planes and how to USE them ... 14
OIS (0100 Tl oo K @001 To 0= 1 Lo o'~ 15
CUStOMIZation TECANIQUESu.iiiiie e e e e e e e e e e e e e et e e et e e e eeaes 15
L0001 To 8= 1 Lol IV L1 S 19
The ContaiNer ENVITONIMENLiiiiiiii et e e e e e e et e e e e et e e e eate e e e aete e eeeetnaaeaees 19
HPCC Systems Components in the values.yaml File ..o 20
The HPCC Systems values.yaml fill@couuiiiiiiiii e e e 24
More HElmM and Yamlooooiiii e e e e et e et e et 30
(001711 01= g =.o I oo o [5o [P 35
(o0 o 1o [N 2F=ox (o o0 1o o P 35
(oo [0T 1 To TS o 111 0] N 36
Installing the elasticAnPCClOgS Chartciiiiiii e e e e e e aeas 37
AZUIE AKS INSIGNES ..ttt e e e e e e e e e e e e e e et e e et e e e e e et e e aaae 40
Controlling HPCC Systems LOgQing OULPULeiiuiiiiieeiii e eeie e e e e e e e e e e s e e e e et e e eaneeeaneees 42

© 2022 HPCC Systems®. All rights reserved
3

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Containerized HPCC Overview

Starting with version 8.0, the HPCC Systems® Platform is focusing on containerized deployments. Thisis useful for
cloud-based deployments (large or small) or local testing/devel opment deployments.

Docker containers managed by Kubernetes (K8s) isanew target operating environment, alongside continued support
for traditional “bare metal” installations using .deb or .rpm installer files. Support for traditional installers continues
and that type of deployment isviable for bare metal deployments or manual setupsin the Cloud.

Thisisnot alift and shift type change, where the platform runsitslegacy structure unchanged and treat the containersas
just away of providing virtual machines on which to run, but asignificant change in how components are configured,
how and when they start up, and where they store their data.

This book focuses on containerized deployments. The first section is about using Docker containers and Helm charts
locally. Docker and Helm do alot of the work for you. The second part uses the same techniques in the cloud.

For local small deployments (for development and testing), we suggest using Docker Desktop and Helm. Thisis useful
for learning, development, and testing.

For Cloud deployments, you can use any flavor of Cloud services, if it supports Docker, Kubernetes, and Helm. This
book, however, will focus on Microsoft Azure for Cloud Services. Future versions may include specifics for other
Cloud providers.

If you want to manually manage your local or Cloud deployment, you can still use the traditional installers and Con-
figuration Manager, but that removes many of the benefits that Docker, Kubernetes, and Helm provide, such as, in-
strumentation, monitoring, scaling, and cost control.

HPCC Systems adheres to standard conventions regarding how Kubernetes deployments are normally configured and
managed, so it should be easy for someone familiar with Kubernetes and Helm to install and manage the HPCC
Systems platform.

Note: The traditional bare-metal version of the HPCC Systems platform is mature and has been heavily used in
commercial applications for amost two decades and is fully intended for production use. The containerized
version is new and is not yet 100% ready for production. In addition, aspects of that version could change
without notice. We encourage you to use it and provide feedback so we can make this version as robust as
abare-metal installation.

© 2022 HPCC Systems®. All rights reserved
4

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Bare-metal vs Containers

If you are familiar with the HPCC Systems platform, there are a few fundamenta changes to note.

Processes and pods, not machines

Anyone familiar with the existing configuration system will know that part of the configuration involves creating
instances of each process and specifying on which physical machines they should run.

In a Kubernetes world, this is managed dynamically by the K8s system itself (and can be changed dynamically as
the system runs).

Additionally, a containerized system is much simpler to manage if you stick to a one process per container paradigm,
where the decisions about which containers need grouping into apod and which pods can run on which physical nodes,
can be made automatically.

Helm charts

In the containerized world, the information that the operator needs to supply to configure an HPCC Systems environ-
ment is greatly reduced. Thereis no need to specify any information about what machines are in use by what process,
as mentioned above, and there is also no need to change a lot of options that might be dependent on the operating
environment, since much of that was standardized at the time the container images were built.

Therefore, in most cases, most settings should be left to use the default. As such, the new configuration paradigm
requires only the bare minimum of information be specified and any parameters not specified use the appropriate
defaults.

The default environment.xml that we include in our bare-metal packages to describe the default single-node system
contains approximately 1300 lines and it is complex enough that we recommend using a special tool for editing it.

The values.yaml from the default helm chart is relatively small and can be opened in any editor, and/or modified via
helm’s command-line overrides. It also is self-documented with extensive comments.

Static vs On-Demand Services

In order to realize the potential cost savings of a cloud environment while at the same time taking advantage of the
ability to scale up when needed, some serviceswhich are always-on in traditional bare-metal installations are launched
on-demand in containerized installations.

For example, an eclccserver component launches a stub requiring minimal resources, where the sole task is to watch
for workunits submitted for compilation and launch an independent K8s job to perform the actual compile.

Similarly, the eclagent component is also astub that launches a K8sjob when aworkunit is submitted and the Thor stub
starts up a Thor cluster only when required. Using this design, not only does the capacity of the system automatically
scale up to use as many pods as needed to handle the submitted load, it scales down to use minimal resources (aslittle
as afraction of asingle node) during idle times when waiting for jobs to be submitted.

ESP and Dali components are always-on as long as the K8s cluster is started--it isn’t feasible to start and stop them on
demand without excessive latency. However, ESP can be scaled up and down dynamically to run as many instances
needed to handle the current load.

Topology settings — Clusters vs queues

In bare-metal deployments, thereisasection called T opology wherethe various queuesthat workunits can be submitted
to are set up. It is the responsibility of the person editing the environment to ensure that each named target has the

© 2022 HPCC Systems®. All rights reserved
5

Containerized HPCC Systems® Platform
Containerized HPCC Overview

appropriate eclccserver, hThor (or ROXIE) and Thor (if desired) instances set up, to handle workunits submitted to
that target queue.

This setup has been greatly simplified when using Helm charts to set up a containerized system. Each named Thor or
eclagent component creates a corresponding queue (with the same name) and each eclccserver listens on all queues by
default (but you can restrict to certain queues only if you really want to). Defining a Thor component automatically
ensures that the required agent components are provisioned.

© 2022 HPCC Systems®. All rights reserved
6

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Local Deployment (Development and
Testing)

Whilethere are many waystoinstall alocal single node HPCC Systems Platform, this section focuses on using Docker
Desktop.

Prerequisites
Windows10 ___ [Mac___ _ __ |linux

¢ Docker Desktop & WSL 2 * Docker Desktop * Docker

s Helm # Helm # Helm

OR ¢ Minikube
o Docker Desktop & Hyper-V

* Helm

OR

s Docker

* Kubectl
« Helm
¢ Minikube

All third-party tools should be 64-bit versions.

Add a repository

To use the HPCC Systems helm chart, you must add it to the helm repository list, as shown below:

hel m repo add hpcc https://hpcc-systens. github.io/hel mchart/

Expected response:

"hpcc" has been added to your repositories
To update to the latest charts:

hel m repo updat e

Expected response:

Updat e Conpl ete. Happy Hel m ng!

© 2022 HPCC Systems®. All rights reserved
7

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Start a default system

The default helm chart starts asimple test system with Dali, ESP, eclccserver, two eclagent queues (ROXIE and hThor
mode), and one Thor queue.

To start thissimple system:
hel minstall mycluster hpcc/hpcc --version=8.2.2

The --version argument is optional, but recommended. It ensures that you know which version you are in-
stalling. If omitted, the latest non-development version isinstalled. Thisexample uses 8.2.2, but you should use
the version you want.

Expected response:

NAME: nmycl ust er

LAST DEPLOYED: Tue Mar 23 13:26:55 2021
NAMESPACE: def aul t

STATUS: depl oyed

REVI SION: 1

TEST SU TE: None

NOTES:

Thank you for installing the HPCC chart.

This chart has defined the fol |l owi ng HPCC conponent s:
dal i . nydal

df userver. df userver

ecl agent . ht hor

ecl agent . r oxi e-wor kuni t
ecl ccserver. nyecl ccserver
esp. ecl wat ch

esp. ecl servi ces

esp. ecl queri es

esp. esdl - sandbox
esp. sql 2ec

esp. df s

roxie.roxie

t hor . t hor

sasha. df urecovery-archi ver
sasha. df uwu- ar chi ver
sasha.fil e-expiry
sasha. wu- ar chi ver

To check status:

kubect| get pods

Expected response:

NAVE READY STATUS RESTARTS AGE
ecl queri es- 7f d94d77cb- n7| nb 1/1 Running O 2nbs
ecl servi ces- b57f 9b7cc- bhwt m 1/1 Runni ng 0 2nmbs
ecl wat ch- 599f b7845- 2hq54 1/1 Runni ng 0 2n6s
esdl - sandbox- 848b865d46- 9bv9r 1/1 Runni ng 0 2nmbs
ht hor - 745f 598795- gl 9dI 1/1 Runni ng 0 2n6s
nmydal i - 6b844bf cf b-j v7f 6 2/ 2 Runni ng 0 2nmbs
nmyecl ccserver - 75bcc4d4d-gf I fs 1/1 Runni ng 0 2n6s
roxi e- agent - 1- 77f 696466f -t | 7bb 1/1 Runni ng 0 2nmbs
roxi e- agent - 1- 77f 696466f - xzrt f 1/1 Runni ng 0 2n6s
r oxi e- agent - 2- 6dd45b7f 9d- n22w 1/1 Runni ng 0 2nmbs
roxi e- agent - 2- 6dd45b7f 9d- xm mk 1/1 Running O 2nbs

© 2022 HPCC Systems®. All rights reserved
8

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

r oxi e-t oposer ver - 695f b9c5c7- 9l np5 1/1 Runni ng 0 2nmbs
roxi e-wor kuni t - d7446699f - r vf 2z 1/1 Runni ng 0 2nbs
sasha- df urecovery- archi ver - 78c47c4db7- k9ndz 1/1 Runni ng 0 2nmbs
sasha- df uwu- ar chi ver - 576b978cc7- b47v7 1/1 Runni ng 0 2n6s
sasha-fil e- expiry-8496d87879- xct 7f 1/1 Runni ng 0 2nmbs
sasha- wu- ar chi ver - 5f 64594948- xj bl h 1/1 Running O 2nbs
sql 2ecl - 5¢8c94d55-tj 4t d 1/1 Runni ng 0 2nmbs
df s- 4a9f 12621-j abcl 1/1 Runni ng 0 2n6s
t hor - ecl agent - 6b8f 564f 9c- qnczz 1/1 Runni ng 0 2nmbs
thor -t horagent - 56d788869f - 7t r xk 1/1 Running O 2nbs

Note: It may take awhile before al components are running, especially the first time as the container images need
to be downloaded from Docker Hub.

© 2022 HPCC Systems®. All rights reserved
9

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Use the default system

Y our system is now ready to use. The usual first step isto open ECL Watch.

Note:

containerized mode.

Use this command to get alist running services and | P addresses:

kubect| get svc

Some pages in ECL Watch, such as those displaying topology information, are not yet fully functional in

Expected response:

NAVE TYPE CLUSTER- | P EXTERNAL- | P PORT(S) AGE
ecl queri es LoadBal ancer 10.108.171.35 | ocal host 8002: 31615/ TCP 2nbs
ecl servi ces Clusterl P 10. 107. 121. 158 <none> 8010/ TCP 2nbs
ecl wat ch LoadBal ancer 10.100. 81. 69 | ocal host 8010: 30173/ TCP 2nbs
esdl - sandbox LoadBal ancer 10.100. 194. 33 | ocal host 8899: 30705/ TCP 2nbs
kuber net es Clusterl P 10.96.0.1 <none> 443/ TCP 2nbs
nmydal i Clusterl P 10. 102. 80. 158 <none> 7070/ TCP 2nbs
roxi e LoadBal ancer 10.100.134.125 | ocal host 9876: 30480/ TCP 2nbs
r oxi e-t oposer ver Clusterl P None <none> 9004/ TCP 2nbs
sasha- df uwmu-archiver CusterlP 10. 110. 200. 110 <none> 8877/ TCP 2nbs
sasha- wu- ar chi ver Clusterl P 10. 111. 34. 240 <none> 8877/ TCP 2nbs
sql 2ecl LoadBal ancer 10.107.177.180 | ocal host 8510: 30054/ TCP 2nbs
df s LoadBal ancer 10.100.52.9 | ocal host 8520: 30184/ TCP 2nbs

Notice the eclwatch serviceis running on localhost:8010. Use that address in your browser to access ECL Watch.
Inside ECL Watch, pressthe ECL button and go to the Playground tab.

From here you can use the example ECL or enter other test queries and pick from the available clusters available to
submit your workunits.

© 2022 HPCC Systems®. All rights reserved
10

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Terminate (Decommission) the system

To check which Helm charts are currently installed, run this command:

hel mli st
To stop the HPCC Systems pods, use helm to uninstall:
hel m uni nstal | mycl uster

This stops the cluster, deletes the pods, and with the default settings and persistent volumes, it also deletes the storage
used.

© 2022 HPCC Systems®. All rights reserved
11

Containerized HPCC Systems® Platform
Storage

Storage

Persistent Storage for a Local Deploy-
ment

When running on a single-node test system such as Docker Desktop, the default storage class normally means that all
persistent volume claims (PV Cs) map to temporary local directories on the host machine. These are typically removed
when the cluster is stopped. Thisisfine for testing but for any real application, you want persistent storage.

To persist datawith Docker Desktop, the first step isto make sure the relevant directories exist:
1. Create data directories using aterminal interface:

For Windows, use this command:

mkdi r c:\hpccdat a

nmkdi r c:\hpccdat a\dal i storage
mkdi r c:\ hpccdat a\ queri es

nkdi r c:\hpccdat a\ sasha

nmkdi r c:\ hpccdat a\ hpcc-dat a
nkdi r c:\hpccdat a\ mydr opzone

For macOS, use this command:
nmkdir -p /Users/ myUser/ hpccdat a/ {dal i st or age, queri es, sasha, hpcc- dat a, nydr opzone}
Note: If all of these folders do not exist, your cluster may not start.

2. Download the HPCC Platform Helm charts.

These are available in the HPCC Systems HPCC-Platform repository on GitHub (https://github.com/hpcc-sys-
tems/HPCC-Platform).

If you want only the helm charts, the use the helm-chart repository (https://github.com/hpcc-systems/hel m-chart).
3. Open atermina and navigate to the helm folder of the repository you just downloaded.
4. Install the Helm chart from the examples/local directory in your local repository.

This chart creates persistent volumes based on host directories you created earlier.

for a WSL2 depl oynent :
hel minstall hpcc-localfile exanpl es/|ocal/hpcc-1localfile
--set common. host pat h=/run/ deskt op/ mt/ host/ ¢/ hpccdat a

for a Hyper-V depl oynent:
hel minstall hpcc-localfile exanpl es/|ocal/hpcc-localfile --set common. host pat h=/c/ hpccdat a

for a macOS depl oynent :
hel minstall hpcc-localfile exanpl es/|ocal/hpcc-localfile --set common. host pat h=/ User s/ nyUser/ hpccdat a

The --set common.hostpath= option specifies the base directory:
The path /run/desktop/mnt/host/c/hpccdata provides access to the host file system for WSL 2.

The path /c/hpccdata provides access to the host file system for Hyper-V.

© 2022 HPCC Systems®. All rights reserved
12

Containerized HPCC Systems® Platform
Storage

The path /User ssmyUser /hpcedata provides access to the host file system for Mac OSX.
Note: The value passed to --set common-hostpath is case sensitive.

5. If you are using Docker Desktop with Hyper-V, add the shared data folder (in this example, C:\hpccdata) in the
Docker Desktop settings.

Thisis not needed in amacOS or WSL 2 environment.
*dodcar

Settings

AN

GEnera Resources File shar ng
These directeries (and their subdirectories) can be bind mounted n:v
| I8 Resources containers. You can check the documentation for more details)
ADWANCED 3
 FILE SHARING CAhpcedata = :E_

By

{
T,

Tl il A it et MEDUTIE, I Nl TN W W ,—__f“ T o WY L

6. Findly, install the hpcc Helm chart, and provide ayaml file that provides storage information that uses the PVCs
created by the previous step.

The example directory contains a sample yaml file that can be used in this case:

hel minstall nycluster hpcc/ --version=8.2.2
-f exanpl es/ | ocal / val ues-1ocal fil e. yam

The --version argument is optional, but recommended. It ensuresthat you know which version you arein-
stalling. If omitted, the latest non-development version isinstalled. This example uses 8.2.2, but you should
use the version you want.

7. Totest, create some data files and workunits by submitting to Thor some ECL code like the following:

Layout Person : = RECORD
UNSI GNED1 | D
STRI NGL5 Fi r st Nane;
STRI N&5 Last Nane;
END;
al | Peopl e : = DATASET([{1,'Fred','Smth'},
{2,"Joe', ' Jones'},
{3,'Jane',"'Smth'}], Layout Person);
QUTPUT(al | Peopl e, , ' MyDat a: : al | Peopl e' , THOR, OVERWRI TE) ;

8. Usethe helm uninstall command to terminate your clusters, then restart.

9. Open ECL Watch and notice your workunits and logical files are still there.

© 2022 HPCC Systems®. All rights reserved
13

Containerized HPCC Systems® Platform
Storage

Import: Storage Planes and how to use
them

Storage planes provide the flexibility to configure where the data is stored within an HPCC Systems platform, but it
doesn't directly address the question of how to get data onto the platform in the first place.

Containerized platforms support importing data in two ways:
» Upload to aLanding Zone and Spray (not yet implemented in the containerized version)
» Copy to a Storage Plane and access directly

Beginning with version 7.12.0, new ECL syntax was added to accessfilesdirectly from astorage plane. Thisissimilar
to thefile:: syntax used to directly read files from a physical machine, typically alanding zone.

The new syntax is:
~pl ane: : <st or age- pl ane- nane>: : <pat h>: : <fi | enane>

Wherethe syntax of the path and filename are the same as used with thefile:: syntax. Thisincludesrequiring uppercase
letters to be quoted with a * symbol. For more details, see the Landing Zone Files section of the ECL Language
Reference.

If you have storage plane configured as in the previous section, and you copy the originalper son file to C:\hpccda-
ta\hpcc-dataltutorial, you can then reference the file using this syntax:

'~plane: :data::tutorial::original person’'

Note: Theoriginalper son fileisavailable from the HPCC Systems Web site (https://cdn.hpccsystems.com/instal |/doc-
s/3 8 0 8rc_CE/Original Person)

© 2022 HPCC Systems®. All rights reserved
14

Containerized HPCC Systems® Platform
Customizing Configurations

Customizing Configurations

Customization Techniques

In this section, we will walk through creating a custom configuration Y AML file and deploying an HPCC Systems®
platform using the default configuration plus the customizations. Once you understand the concepts in this chapter,
you can refer to the next chapter for areference to all configuration value settings.

There are severa ways to customize a platform deployment. We recommend using methods that allow you to best
take advantage of the configuration as code (CaC) practices. Configuration as code is the standard of managing con-
figuration filesin aversion control system or repository.

Thefollowingisalist of common customization techniques:
» Thefirst way to override a setting in the default configuration is viathe command line using the --set parameter.
Thisisthe easiest, but the least compliant with CaC guidelines. It is also harder to keep track of overridesthisway.
» The second way is to modify the default values saved using a command like:
hel m show val ues hpcc/ hpcc > nyval ues. yan

This could comply with CaC guidelinesif you place that file under version control, but it makes it harder to utilize
anewer default configuration when one becomes available.

» The third way, is the one we typicaly use. Use the default configuration plus a customization YAML file and
use the -f parameter (or --values parameter) to the helm command. This uses the default configuration and only
overrides the settings specified in the customization YAML. In addition, you can pass multiple YAML filesin the
same command, if desired.

For this tutorial, we will use the third method to stand up a platform with all the default settings but add some
customizations. In the first example, instead of one Roxie, it will have two. In the second example, it will add a
second 10-way Thor.

© 2022 HPCC Systems®. All rights reserved
15

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for Two Roxies

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.
hel m repo add hpcc https://hpcc-systens. github.io/hel mchart/
If you have added it, update to the latest charts:
hel m repo update
2. Create anew text file and name it twor oxies.yaml and open it in atext editor.
Y ou can use any text editor.
3. Savethedefault valuesto atext file:
hel m show val ues hpcc/ hpcc > nyval ues. yamn
4. Open the saved file (myvaues.yaml) in atext editor.
5. Copy the entire roxie: section and paste it into the new tworoxies.yaml file.
6. Copy theentire contentsof the new tworoxies.yaml file, except thefirst line (roxie:), and pasteit at the end of thefile.
7. In the second block, edit the value for name: and change it to roxie2.
8. Inthe second block, edit the value for prefix: and changeit to roxie2.
9. Inthe second block, edit the value for name: under services: and change it to roxie2.
10.Save the file and close the text editor.
The resulting tworoxies.yaml file should look like this

Note: The comments have been removed to simplify the example:

roxi e:
- name: roxie
di sabl ed: false
prefix: roxie
servi ces
- nanme: roxie
servi cePort: 9876
|'i stenQueue: 200
nunirhr eads: 30
visibility: |oca
replicas: 2
nunmChannel s: 2
serverReplicas: O
| ocal Agent: fal se
tracelLevel : 1
t opoServer:
replicas: 1

- name: roxie2
di sabl ed: false
prefix: roxie2
servi ces
- nane: roxie2
servi cePort: 9876
i stenQueue: 200

© 2022 HPCC Systems®. All rights reserved
16

Containerized HPCC Systems® Platform
Customizing Configurations

nunirhr eads: 30

visibility: |oca
replicas: 2
nunChannel s: 2
serverReplicas: O
| ocal Agent: fal se
traceLevel : 1
t opoSer ver:

replicas: 1

Deploy using the new custom configuration chart.

1. Open aterminal and navigate to the folder where you saved the tworoxies.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:
hel minstall nycluster hpcc/hpcc -f tworoxies.yani

3. After you confirm that your deployment is running, open ECL Watch.

Y ou should see two Roxie clusters available as Targets -- roxie and roxie2.

Create a Custom Configuration Chart for Two Thors

Y ou can specify more than one custom configuration by repeating the -f parameter.
For example:
hel minstall mycluster hpcc/hpcc -f tworoxies.yam -f twothors.yan
In this section, we will add a second 10-way Thor.
1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.
hel m repo add hpcc https://hpcc-systens. github.io/hel mchart/
If you have added it, update to the latest charts:
hel m repo updat e
2. Create anew text file and name it twothorsyaml and open it in atext editor.
Y ou can use any text editor.
3. Open the default valuesfile that you saved earlier (myvalues.yaml) in atext editor.
4. Copy the entire thor: section and paste it into the new twothors.yaml file.
5. Copy the entire contents of the new twothors.yaml file, except thefirst line (thor:), and pasteit at the end of thefile.
6. Inthe second block, edit the value for name: and change it to thor 10.
7. In the second block, edit the value for prefix: and changeit to thor 10.
8. In the second block, edit the value for numWorkers: and change it to 10.
9. Savethefile and close the text editor.

The resulting twothors.yaml file should look like this

© 2022 HPCC Systems®. All rights reserved
17

Containerized HPCC Systems® Platform
Customizing Configurations

Note: The comments have been removed to simplify the example:

t hor:

- nane: thor
prefix: thor
numMor kers: 2
maxJobs: 4
maxG aphs: 2

- nane: thor10
prefix: thor10
numhor kers: 10
maxJobs: 4
maxG aphs: 2

Deploy using the new custom configuration chart.

1. Open aterminal and navigate to the folder where you saved the twothors.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:
|If you have previously stopped your cluster
hel minstall mycluster hpcc/hpcc -f tworoxies.yam -f twothors.yam
To upgrade without stopping

hel m upgrade mycl uster hpcc/ hpcc -f tworoxies.yam -f twothors.yanm
3. After you confirm that your deployment is running, open ECL Watch.

Y ou should see two Thor clusters available as Targets -- thor and thor10.

© 2022 HPCC Systems®. All rights reserved
18

Containerized HPCC Systems® Platform
Configuration Values

Configuration Values

Thischapter describesthe configuration of HPCC Systemsfor a K ubernetes Contai nerized deployment. Thefollowing
sections detail how configurations are supplied to helm charts, how to find out what options are available and some
details of the configuration file structure. Subsequent sections will also provide a brief walk through of some of the
contents of the default values.yaml file used in configuring the HPCC Systems for a containerized deployment.

The Container Environment

One of theideas behind our move to the cloud wasto try and simplify the system configuration while also delivering a
solution flexible enough to meet the demands of our community while taking advantage of container features without
sacrificing performance.

The entire HPCC Systems configuration in the container space, is governed by a single file, a values.yaml file, and
its associated schemafile.

The values.yaml and how it is used

The values.yam file is the delivered configuration values for a Helm chart. The values.yaml file is used by the Helm
chart to control how HPCC Systems is deployed to the cloud. This values file is one file used to configure and get
an HPCC Systems instance up and running on Kubernetes. The values.yaml file defines everything that happens to
configure and/or define your system for acontainerized deployment. Y ou should use the valuesfile provided asabasis
for modeling the specific customizations for your deployment specific to your requirements.

The HPCC Systems values.yaml file can be found in the HPCC Systems github repository. To use the HPCC Systems
Helm chart, first add the hpcc chart repository using Helm, then access the Helm chart values from the chartsin that
repository.

For example, when you add the " hpcc" repository, asrecommended prior toinstalling the Helm chart with thefollowing
command:

hel m repo add hpcc https://hpcc-systens. github.io/hel mchart
Y ou can now view the HPCC Systems delivered charts and see the values there by issuing:

hel m show val ues hpcc/ hpcc

Y ou can capture the output of this command, look at how the defaults are configured and use it as a basis for your
customization.

© 2022 HPCC Systems®. All rights reserved
19

Containerized HPCC Systems® Platform
Configuration Values

The values-schema.json

The values-schema.json is a JSON file that declares what is valid and what is not within the sum total of the merged
valuesthat are passed into Helm at install time. 1t defines what values are allowed, and validates the valuesfile against
them. All the core items are declared in the schema file, while the default values.yaml file also contains comments
on the most important elements. If you wanted to know what options are available for any particular component then
the schemais agood place to start.

The schema file typically contains (for a property) a name and a description. It will often include details of the type,
and the items it can contain if it isalist or dictionary. For instance:

"roxie": {

"description": "roxie process",

“"type": "array"

"itens": { "$ref": "#/ definitions/roxie" }
Jj

Each plane, in the schema file has a list of properties generally containing a prefix (path), a subpath (subpath), and
additional properties. For example, for astorage plane the schemafile hasalist of propertiesincluding the prefix. The
"planes’ in this case are a reference ($ref) to another section of the schema. The schemafile should be complete, and
contain everything required including descriptions which should be relatively self-explanatory.

"storage": {
"type": "object",
"properties": {
"host G oups": {
"$ref": "#/definitions/hostG oups"”
}

"pl anes": {
"$ref": "#/definitions/storagePl anes"
}

}

"addi tional Properties": false

Note the additional Properties value typically at the end of each section in the schema. It specifies whether the values
allow for additional properties or not. If that additional Properties value is present and set to false, then no other
properties are alowed and the property list is complete.

In working with the HPCC Systems values.yaml, the values file must validate against this schema. If thereisavaue
that is not allowed as defined in the schemafile it will not start and instead generate an ERROR.

HPCC Systems Components in the val-
ues.yaml File

The HPCC Systems Helm charts all ship with stock/default values. These Helm charts have a set of default values
ideally to be used as a guide in configuring your deployment. Generally, every HPCC Systems component is a list.
That list defines the properties for each instance of the component.

This section will provide additional details and any noteworthy insight for the HPCC Systems components defined
in the values.yaml file.

The HPCC Systems Components

One of the key differences between the bare metal and container/cloud is that in bare metal storage is directly tied to
the Thor or the Thor worker nodes, and the Roxie worker nodes, or even in the case of the ECLCC Server the DLLs.
In containers these are completely separate and anything having to do with filesis defined in the values.yaml.

© 2022 HPCC Systems®. All rights reserved
20

Containerized HPCC Systems® Platform
Configuration Values

In containers component instances run dynamically. For instance, if you have configured your system to use a 50-way
Thor, then a50-way Thor will be spawned when ajob is queued to it. When that job isfinished that Thor instance will
disappear. Thisis the same pattern for the other components as well.

Every component should have a resources entry, in the delivered values.yaml file the resources are present but com-
mented out as indicated here.

#resour ces:
cpu: "1"
nmenory: "4G'

The stock values file will work and allow you to stand up afunctional system, however you should define the compo-
nent resources in amanner that corresponds best to your operational strategy.

Dali

When configuring Dali, which al so has aresources section, it isgoing to want plenty of memory and agood amount of
CPU aswell. Itisvery important to define these carefully. Otherwise Kubernetes could assign all the pods to the same
virtual machine and components fighting for memory will crush them. Therefore more memory assigned the better. If
you define these wrong and a process uses more memory than configured, Kubernetes will kill the pod.

Components: dafilesvrs, dfuserver

The HPCC Systems components of dafilesvrs, eclccservers, dfuserver, are declared aslistsin the yaml, asisthe ECL
Agent.

Consider the dfuserver which isin the delivered HPCC Systems values.yaml as:

df userver:
- nane: dfuserver
maxJobs: 1

If you were to add a mydfuserver asfollows

df userver:

- nane: dfuserver
maxJobs: 1

- nane: nydfuserver
maxJobs: 1

In this scenario you would have another item here named mydfuserver and it would show up in ECLWatch and you
can submit items to that.

If you wanted to add another dfuserver, you can add that to the list similarly. You can likewise instantiate other
components by adding them to their respective lists.

ECL Agent and ECLCC Server

Vaues of note for the ECL Agent and ECLCC Server.

useChildProcess -- As defined in the schema, launches each workunit compile asachild processrather thaninitsown
container. When you submit ajob or query to compile it gets queued and processed, with this option set to true it will
spawn achild process utilizing almost no additional overhead in starting. Ideal for sending many small jobsto compile.
However, because each compilejob isno longer executed as an independent pod with it's own resource specifications,
but instead runs as a child process within the ECLCC Server pod itself, the ECLCC Server pod must be defined with
adequate resources for itself (minimal for listening to the queue etc.) and all the jobs it may have to run in parallel.

For example, imagine maxJobs is set to 4, and 4 large queries are queued rapidly, that will mean 4 child processes
are launched each consuming cpu and memory within the ECLCC Server pod. With the component configured with

© 2022 HPCC Systems®. All rights reserved
21

Containerized HPCC Systems® Platform
Configuration Values

useChildProcesses set to true, each job will run in the same pod (up to the value of maxJobs in parallel). Therefore
with useChildProcesses enabled, the component resources must be defined such that the pod has enough resources to
handl e the resource demands of all those jobsto be able to runin parallel.

With useChildProcess enabled it could be rather expensive in most cloud pricing models, and rather wasteful if there
aren't any jobs running. Instead you can set this useChildprocess to false (the default) to start a pod to compile each
guery with only the required memory for the job which will be disposed of when done. Now this model also has
overheard, perhaps 20 seconds to a minute to spawn the Kubernetes cluster to process the job. Which may not be ideal
for an environment which is sending several small jobs, but rather larger jobs which would minimize the effect of the
overhead in starting the Kubernetes cluster.

Setting useChildProcessto false better allows for the possibility of dynamic scaling. For jobs which would take along
whileto compile, the extra (start up) overhead isminimal, and that would betheideal caseto have the useChildProcess
asfalse. Setting useChildProcessto false only allows 1 pod per compile, though there is an attribute for putting atime
[imit on that compilation.

ChildProcessTimeLimit is the time limit (in seconds) for child process compilation before aborting and using a
separate container, when the useChildProcesses is false.

maxActive -- The maximum number of jobs that can be run in parallel. Again use caution because each job will need
enough memory to run. For instance, if maxActive is set to 2000, you could submit a very big job and in that case
spawn some 2000 jobs using a considerable amount of resources, which could potentially run up a rather expensive
compilation bill, again depending on your cloud provider and your billing plan.

Sasha

The configuration for Sashais an outlier asit is a dictionary type structure and not alist. You can't have more than
one archiver or dfuwu-archiver as that is avalue limitation, you can choose to either have the service or not (set the
'disabled’ value to true).

Thor

Thor instances run dynamically, as do the other components in containers. The configuration for Thor also consists of
alist of Thor instances. Each instance dynamically spawns a collection of pods (manager + N workers) when jobs are
gueued to it. When idle there are no worker (or manager) pods running.

If you wanted a 50-way Thor you set the number of workers, the numWorker svalue to 50 and you would have a 50-
way Thor. Asindicated in the following example:
t hor:
- nane: thor
prefix: thor
numhbr kers: 50

In doing so, ideally you should rename the resource to something which clearly describes it, such as thor_50 as in
the following example.

-name: thor_50

Updating the numWorkers value will restart the Thor agent listening to the queue, causing al new jobs to use the
new configuration.

maxJobs -- Controls the number of jobs, specifically maxJobs sets the maximum number of jobs.

maxGraphs -- Limits the maximum amount of graphs. It generally makes sense to keep this value below or at the
same number as maxJobs, since not all jobs submit graphs and when they do the Thor jobs are not executing graphs all

© 2022 HPCC Systems®. All rights reserved
22

Containerized HPCC Systems® Platform
Configuration Values

the time. If there are more than 2 submitted (Thor) graphs, the second would be blocked until the next Thor instance
becomes available.

Theideahereisthat jobs may spend significant amount of time outside of graphs, such aswaiting on aworkflow state
(outside of the Thor engineitself), blocked on apersist, or updating super files, etc. Thenit makes sensefor Thor to have
ahigher limit of concurrent jobs (maxJobs) than graphs (maxGraphs/ Thor instances). Since Thor instances (graphs)
arerelatively expensive (lots of pods/higher resource use), while workflow pods (jobs) are comparatively cheap.

Thus, the delivered (example) chart values defines maxJobs to be greater than maxGraphs. Jobs queued to a Thor
aren't always running graphs. Therefore it can make sense to have more of these jobs, which are not consuming alarge
Thor and al its resources, but restrict the max number of Thor instances running.

Thor has 3 components (that correspond to the resource sections).
1. Workflow

2. Manager

3. Workers

The Manager and Workers are launched together and consume quite a bit of resoures (and nodes) typicaly. While
the Workflow isinexpensive and usually doesn't require as many resources. Y ou might expect in a Kubernetes world,
many of them would co-exist on the same node (and therefore be inexpensive). So it makes sense for maxJobs to be
higher, and maxGraphs to be lower

In Kubernetes, jobs run independently in their own pods. Whilein bare metal we can have jobs that could effect other
jobs because they are running in the same process space.

© 2022 HPCC Systems®. All rights reserved
23

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems values.yaml file

The delivered HPCC systemsvalues.yaml fileismore of an example providing abasic type configuration which should
be customized for your specific needs. One of the main ideas behind the valuesfile is to be able to relatively easily
customize it to your specific scenario. The delivered chart is set up to be sensible enough to understand, while also
allowing for relatively easy customization to configure a system to your specific requirements. This section will take
acloser ook at some aspects of the delivered values.yaml.

The delivered HPCC Systems Values file primarily consists of the following areas:
» globa

* storage

* dataplanes

* certificates

* security

* secrets

+ components

The subsequent sections will examine some of these more closely and why each of them is there.

Storage

Containerized Storage is another key concept that differs from bare metal. There are a few differences between con-
tainer and bare metal storage. The Storage section isfairly well defined between the schemafile, and the values.yaml.
A good approach towards storage isto clearly understand your storage needs, and to outline them, and once you have
that basic structure in mind the schema can help to fill in the details. The schema should have a decent description
for each attribute. All storage should be defined via planes. There is a relevant comment in the values.yaml further
describing storage.

storage

##

1. |f an engi ne conponent has the dataPl ane property set,

then that plane will be the default data |ocation for that conponent.
2. If there is a plane definition with a category of "data"

then the first matching plane will be the default data | ocation

#t

|f a data plane contains the storageC ass property then an inplicit pvc

will be created for that data pl ane

##

|f plane.pvc is defined, a Persistent Volunme O aimnust exist with that nane,
st oraged ass and storageSi ze are not used

#t

|f plane.storageCl ass is defined, storageC assNane: <storageCl ass>

If set to "-", storageCd assNanme: "", which di sabl es dynam c provi si oni ng
If set to "", choosing the default provisioner

(gp2 on AWS, standard on GKE, AWS & OpenSt ack)

##

pl ane. forcePerm ssions=true is required by sone types of provisioned

storage, where the nounted filing system has insufficient perm ssions to be
read by the hpcc pods. Exanpl es include using hostpath storage (e.g. on

m ni kube and docker for desktop), or using NFS nounted storage

© 2022 HPCC Systems®. All rights reserved
24

Containerized HPCC Systems® Platform
Configuration Values

There are different categories of storage, for an HPCC Systems deployment you must have at a minimum a dali
category, adll category, and at least 1 data category. These types are generally applicable for every configuration in
addition to other optional categories of data.

All storage should be in a storage plane definition. This is best described in the comment in the storage definition
in the valuesfile.

pl anes:
nanme: <required>
prefix: <path> Root directory for accessing the plane

(if pvc defined),

or url to access plane.

category: data|dali|lz|dll]|spill|tenp What category of data is stored on this plane?

#

For dynami c pvc creation:

storageC ass: ''

storageSi ze: 1G

#

For persistent storage:

pvc: <nanme> # The nanme of the persistant volunme claim

forcePerm ssions: false

hosts: [<host-list] # Inline list of hosts

host Gr oup: <name> # Nane of the host group for bare netal

must match the name of the storage plane..

#

Ot her options:

subPat h: <rel ati ve- pat h> # Optional sub directory within <prefix>

to use as the root directory

numDevi ces: 1 # nunber of devices that are part of the plane

secret: <secret-id> # what secret is required to access the files.

This could optionally become a list if required
(or add secrets:).

defaul t SprayParts: 4 # The nunber of partitions created when spraying
(default: 1)

cost: # The storage cost

st orageAt Rest: 0.0135 # Storage at rest cost: cost per G B/ nonth

Each plane has 3 required fields: The name, the category and the prefix.

When the system isinstalled,using the stock supplied valuesit will create a storage volume which has 1 GB capacity
viathe following properties.

For example:

- nane: dali
st oraged ass:
st orageSi ze: 1G
prefix: "/var/lib/HPCCSystens/dalistorage"
category: dali

Most commonly the prefix: defines the path within the container where the storage is mounted. The prefix can be a
URL for blob storage. All pods will use the (prefix:) path to access the storage.

For the above example, when you look at the storage list, the storageSize will create a volume with 1 GB capacity.
The prefix will be the path, the category is used to limit access to the data, and to minimize the number of volumes
accessible from each component.

The dynamic storage lists in the values.yaml file are characterized by the storageClass: and storageSize: values.

stor ageClass: defines which storage provisioner should be used to allocate the storage. A blank storage classindicates
it should use the default cloud providers storage class.

© 2022 HPCC Systems®. All rights reserved
25

Containerized HPCC Systems® Platform
Configuration Values

storageSize: Asindicated in the example, defines the capacity of the volume.

Storage Category

Storage category is used to indicate the kind of data that is being stored in that location. Different planes are used
for the different categories to isolate the different types of data from each other, but also because they often require
different performance characteristics. A named plane may only store one category of data. The following sections|ook
at the currently supported categories of data used in our containerized deployment.

category: data|dali|lz|dll]|spill|[tenp # What category of data is stored on this plane?

The system itself can write out to any data plane. Thisis how the data category can help to improve performance. For
example, if you have an index, Roxie would want rapid access to data, versus other components.

Some components may use only 1 category, some can use several. The valuesfile can contain more than one storage
plane definition for each category. Thefirst storage planein thelist for each category is used as the default location to
store that category of data. These categories minimize the exposure of plane data to components that don't need them.
For example the ECLCC Server component does not need to know about landing zones, or where Dali storesits data,
so it only mounts the plane categoriesit needs.

Ephemeral Storage

Ephemeral storage is allocated when the HPCC Systems cluster isinstalled and deleted when the chart is uninstalled.
Thisis helpful in keeping cloud costs down but may not be appropriate for your data.

In your system, you would want to override the delivered stock value(s) with storage appropriate for your specific
needs. The supplied values create ephemeral or temporary persistent volumes that get automatically deleted when
the chart is uninstalled. Y ou probably want the storage to be persistent. Y ou should customize the storage to a more
suitable configuration for your needs.

Persistent Storage

Kubernetes uses persistent volume claims (pvcs) to provide access to data storage. HPCC Systems supports cloud
storage through the cloud provider that can be exposed through these persistent volume claims.

Persistent Volume Claims can be created by overriding the storage values in the delivered Helm chart. The valuesin
the examples/local/values-localfile.yaml provided override the corresponding entries in the original delivered stock
HPCC Systemshelm chart. Thelocalfile chart creates persistent storage volumes. Y ou can use the val ues-local file.yaml
directly (as demonstrated in separate docs/tutorials) or you can useit as abasis for creating your own override chart.

To define a storage plane that utilizes a PV C, you must decide on where that data will reside. Y ou create the storage
directories, with the appropriate names and then you can install the localfiles Helm chart to create the volumes to use
thelocal storage option, such asin the following example:

hel minstall nycluster hpcc/hpcc -f exanpl es/|ocal/val ues-1ocalfile.yamn
Note: The settings for the PV C's must be ReadWriteMany, except for Dali which can be ReadWriteOnce.

There are a number of resources, blogs, tutorials, even developer videos that provide step-by-step detail for creating
persistent storage volumes.

Bare Metal Storage

There are two aspects to using bare metal storage in the Kubernetes system. The first is the hostGroups entry in the
storage section which provides named lists of hosts. The hostGroups entries can take one of two forms. Thisis the
most common form, and directly associates alist of host names with a name:

st orage:

© 2022 HPCC Systems®. All rights reserved
26

Containerized HPCC Systems® Platform
Configuration Values

host Gr oups:
- nanme: <nanme> "The nane of the host group"”
hosts: ["a list of host names"]

The second form allows one host group to be derived from another:

st or age:
host G- oups:
- nane: "The nane of the host group process"
host Group: "Nanme of the hostgroup to create a subset of"
count: <Number of hosts in the subset>
offset: <the first host to include in the subset>
delta: <Cycle offset to apply to the hosts>

Some typical exampleswith bare-metal clusters are smaller subsets of the host, or the same hosts, but storing different
parts on different nodes, for example:

st or age:

host G- oups:

- nanme: groupABCDE # Explicit list of hosts
hosts: [A, B, C, D, E

- nanme groupCDE # Subset of the group last 3 hosts
host Group: gr oupABCDE
count: 3
of fset: 2

- nanme groupDEC # Sane set of hosts, but different part->host mappi ng
host Group: groupCDE
delta: 1

The second aspect is to add a property to the storage plane definition to indicate which hosts are associated with it.
There are two options:

* hostGroup: <name> The name of the host group for bare metal. The name of the hostGroup must match the name
of the storage plane.

* hosts: <list-of-namesname> Aninlinelist of hosts. Primarily useful for defining one-off external landing zones.

For Example:

st or age:

pl anes:

- nane: denpOne
category: data
prefix: "/hone/deno/tenp"
host Group: groupABCD # The nane of the host G oup

- nanme: nmyDropZone
category: |z
prefix: "/hone/deno/ mydr opzone"
hosts: ['nylandingzone.com] # Inline reference to an external host.

Storage Items for HPCC Systems Components

General Data Storage

General datafiles generated by HPCC are stored stored in data. For Thor, data storage costs could likely be significant.
Sequential access speed isimportant, but random accessis much less so. For ROXIE, speed of random accessislikely
to be most important.

LZ

LZ or Iz, utilized for landing zone data. This is where we would put raw data coming into the system. A landing
zone where external users can read and write files. HPCC Systems can import from or export files to alanding zone.

© 2022 HPCC Systems®. All rights reserved
27

Containerized HPCC Systems® Platform
Configuration Values

Typically performance is less of an issue, it could be blob/s3 bucket storage, accessed either directly or via an NFS
mount.

dali

Thelocation of the dali metadata store, which needs to support fast random access.

dll

Where the compiled ECL queries are stored. The storage needs to allow shared objects to be directly loaded from it
efficiently.

If you wanted both Dali and dll dataon the same plane, it is possible to use the same prefix for both subpath properties.
Both would use the same prefix, but should have different subpaths.

sasha

This is the location where archived workunits, etc are stored and it is typically less speed critical, requiring lower
storage costs.

spill
An optional category where the spill files are written out to. Local NVMe disks are potentially a good choice for this.

temp

An optional category where temp files can be written to.

The Security Values

This section will ook at the values.yaml sections dealing with the system security components.

Certificates

The certificates section can be used to enable the cert-manager to generate TL S certificates for each component in
the HPCC Systems deployment.

certificates:
enabl ed: fal se
i ssuers:
| ocal :
name: hpcc- | ocal -i ssuer

In the delivered yaml file certificates are not enabled, asillustrated above. Y ou must first install the cert-manager to
use this feature.

Secrets

The Secrets section contains a set of categories, each of which contain alist of secrets. The Secrets section iswhere to
get info into the system if you don't want it in the source. Such as code with embedded code, you can have that defined
in the code sign sections. If you have information that you don't want public but need to run it you could use secrets.

Vaults

Vaults is another way to do Secrets. The vaults section mirrors the secret section but leverages HashiCorp Vault for
the storage of secrets. There is an additional category for vaults named "ecl-user”. The intent of the ecl-user vault

© 2022 HPCC Systems®. All rights reserved
28

Containerized HPCC Systems® Platform
Configuration Values

secrets is to be readable directly from ECL code. Other secret categories are read internally by system components
and not exposed directly to ECL code.

Replicas and Resources

Other noteworthy values in the charts that have bearing on HPCC Systems set up and configuration.

Replicas

replicas. defines how many replica nodes come up, how many pods run to balance aload. To illustrate, if you have a
1-way Roxie and set replicasto 2 you would have 2, 1-way Roxies.

Resources

Most all components have a resources section which defines how many resources are assigned to that component. In
the stock delivered values files, the resources: sections are there for illustration purposes only, and are commented
out. Any cloud deployment that will be performing any non-trivial function, these values should be properly defined
with adequate resources for each component, in the same way you would allocate adequate physical resources in a
data center. Resources should be set up in accordance with your specific system requirements and the environment
you would be running them in. Improper resource definition can result in running out of memory and/or Kubernetes
eviction, since the system could use unbound amounts of resources, such as memory, and nodeswill get overwhelmed,
at which point Kubernetes will started evicting pods. Therefore if your deployment is seeing frequent evictions, you
may want to adjust your resource allocation.

#resour ces:
cpu: "1"
nmenory: "4G'

Every component should have a resources entry, but some components such as Thor have multiple resources. The
manager, worker, eclagent components all have different resource requirements.

Taints, Tolerations, and placements

This is an important consideration for containerized systems. Taints and Tolerations are types of Kubernetes node
constraints also referred to by Node Affinity. Node affinity isaway to constrain podsto nodes. Only one "affinity" can
be applied to a pod. If a pod matches multiple placement 'pods lists, then only the last "affinity” definition will apply.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate nodes. Tolerations are
applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching taints. Taints are the
opposite -- they allow a node to repel a set of pods.

For example, Thor workers should all be on the appropriate type of VM. If a big Thor job comes along — then the
taints level comesinto play.

For more information and examples of our Taints, Tolerations, and Placements please review our devel oper documen-
tation:

https://github.com/hpcc-systems/HPCC-Pl atf orm/bl ob/master/hel m/hpcc/docs/pl acements.md

Placements

The Placement is responsible for finding the best node for a pod. Most often placement is handled automatically by
Kubernetes. You can constrain a Pod so that it can only run on particular set of Nodes. Using placements you can
configure the Kubernetes scheduler to use a"pods” list to apply settings to pods. For example:

pl acenent s:

© 2022 HPCC Systems®. All rights reserved
29

Containerized HPCC Systems® Platform
Configuration Values

- pods: [list]
pl acenent :
<supported configurations>

The pods: [list] can contain avariety of items.

1. HPCC Systems component types, using the prefix type: this can be: dali, esp, eclagent, eclccserver, roxie, thor.
For example "type:esp"

2. Target; the name of an array item from the above types using prefix "target:" For example "target:roxie" or "tar-
get:thor".

3. Pod, "Deployment" metadata name from the name of the array item of atype. For example, "eclwatch”, "mydali”,
"thor-thoragent”

4. Job name regular expression: For example "compile-" or "compile-." or exact match "~compile-.$"
5. All: to apply for all HPCC Systems components. The default placements for pods we deliver is[al]

Placements—in Kubernetesthe Placement concept allowsyou to spread your pods acrosstypesof nodeswith particul ar
characteristics. Placements would be used to ensure that pods or jobs that want nodes with specific characteristics are
placed on them.

For instance a Thor cluster could be targeted for machine learning using nodes with a GPU. Ancther job may want
nodes with a good amount more memory or another for more CPU. Y ou can use placements to ensure that pods with
specific requirements are placed on appropriate nodes.

More Helm and Yaml

This section is intended to provide some helpful information to get started with a containerized deployment. There
are numerous resources for using Kubernetes, Helm, and Yaml files. Previously, we touched on the values.yaml file
and the values-schema.json file. This section expands on some of those concepts and how they might be applied when
using the containerized version of the HPCC Systems platform. For more information about using Kubernetes, Helm,
or YAML files, or for cloud or container deployments, refer to the respective documentation.

The values.yaml file structure

The values.yaml file is a yaml file. Yaml is a data serialization language often used as a format for configuration
files. The construct that makes up the bulk of ayaml file is the key-value pair, sometimes referred to as a hash or a
dictionary. The key-value pair construct consists of a key that points to some value(s). The values could be strings,
numbers, booleans, integers, arrays, or dictionaries, and lists. These values are defined by the schema.

In yaml files the indentation is used to represent document structure and nesting. Leading spaces are significant and
tabs are not allowed.

Dictionary

Dictionaries are collections of key value mappings. All keys are case-sensitive and as we mentioned earlier the inden-
tation is also crucial. These keys must be followed by a colon (;) and a space. Dictionaries can also be nested.

Dictionary isakey: value, followed by another key: value:, for example:

| oggi ng:
detail: 80

Thisis an example of adictionary for logging.

© 2022 HPCC Systems®. All rights reserved
30

Containerized HPCC Systems® Platform
Configuration Values

Dictionaries in passed in values files, such as the ones in the myoverrides.yaml file in the example below, will be
merged into the corresponding dictionaries in the existing values, starting with the default values from the delivered
hpce helm chart.

hel minstall myhpcc hpcc/ hpce -f myoverri des. yam

Note that you can pass in as many yaml files as you like, they will be merged in the order that they appear on the
command line.

Any pre-existing valuesin adictionary that are not overridden will continue to be present in the merged result. How-
ever, you can delete the contents of a dictionary by setting it to null.

Lists

Lists are groups of elements beginning at the same indentation level starting with a - (a dash and a space). Every
element of the list isindented at the same level and starts with a dash and a space. Lists can aso be nested, and they
can be lists of dictionaries, which may in turn also have list properties.

An example of alist of dictionaries, with placement.tolerations as a nested list.:

pl acenment s:
- pods: ["all"]
pl acement :
tol erations
- key: "kubernetes.azure.com scal esetpriority"

A key isdenoted usingaminussign, whichisan entry iteminthelist, whichitself isadictionary with nested attributes.
Then the next minus sign (at that same indentation level) isthe next entry in that list.

Global

The first section of the values.yaml file describes global values. The global.image.root is a string denoting which
version to pull. Global applies generally to everything.

Default values for hpcc

gl obal
Settings in the global section apply to all HPCC conponents in all subcharts

i mage:
It is recormended to nane a specific version rather than latest, for any non-trivia
For best results, the hel mchart version and platform version should match - default if version
not specified. Do not override w thout good reason as undefined behavior may result.
version: Xx.y.z
root: "hpccsystens" # change this to pull from sonewhere other than Docker Hub hpccsystens
pul | Pol i cy: |fNotPresent

1 oggi ng sets the default |ogging information for all conponents. Can be overridden |ocally

| oggi ng
detail: 80

In the delivered HPCC Systems values.yaml file excerpt (above) global: is atop level dictionary. As noted in the
comments, the settings in the global section apply to all HPCC Systems components. Note from the indentation that
the other values are nested in that global dictionary.

Image

In our delivered values.yaml file the value immediately following global: isimage: you should use a specific named
version rather than using the "latest”, as also indicated in the comments in the values file. The Helm chart version

© 2022 HPCC Systems®. All rights reserved
31

Containerized HPCC Systems® Platform
Configuration Values

and platform version should match. Ideally you shouldn't have to set theimage.version at al. By default it will match
the helm chart version.

The Root value

The global dictionary/definition level entry isroot. For example
root: "hpccsystens" # change to pull your inmages sonewhere other than Docker Hub hpccsyst ens

In values.yaml file this uses our HPCC Systems specific repository. It is possible you may want to pull from some
other repository, this then is where to set that value.

root: SomeValue

Other Chart Values

Items defined in the global section are shared between al components.

Examples of global values are the storage and security sections.

st or age:
pl anes:

and aso

security:
ecl Security:
Possi bl e val ues:
allow - functionality is permtted
deny - functionality is not permtted
all owSi gned - functionality permtted only if code signed
enbedded: "al | ow'
pi pe: "allow'
extern: "allow'
datafile: "allow'

In the above examples, storage: and security: are global chart values.

Usage

The HPCC Systems values.yaml fileis used by the Helm chart to control how HPCC Systemsis deployed. The values
file contains dictionaries and lists, and they can be nested to create more complex structures. The stock HPCC Sys-
tems values.yaml is intended as a quick start demonstration installation guide which is not appropriate for non-trivial
practical usage. Y ou should customize your deployment to one which is more suited towards your specific needs. To
customize your deployment you override the stock valuesin the values.yaml file, as in the following example:

hel minstall myhpcc hpcc/ hpcec -f nyoverri des. yan

The above example uses the myoverrides.yaml file via the -f parameter, which overrides any specified values in the
HPCC Systemsvalues.yaml file. It'simportant to note that this merges the overrides from myoverrides.yaml. Anything
that's in the values in the helm chart itself that is not overwritten by the passed in values will remain active. When
there are 2 yaml files such as this example (the stock values.yaml, and the myoverrides.yaml), if there is a matching
entry (anything other than a dictionary) the value from 2nd file will overwrite the first. Dictionaries however will
always be merged.

Further information about customized deploymentsis covered in other sections, as well as the Kubernetes Helm doc-
umentation. Consulting the Helm documentation provides complete detail for every aspect of Helm chart usage, and
not only for afew select cases described.

© 2022 HPCC Systems®. All rights reserved
32

Containerized HPCC Systems® Platform
Configuration Values

Use Case

For instance, you want to update logging detail. Y ou could have another yaml file to update that value, or any other
list value using an override yaml file.

Aswewill seelater, components are defined aslists, so any definition of acomponent in auser valuesfile will replace
all instances of the component in the default chart. Y ou can remove all components defined in alist, by replacing the
list with anull list, for example,

thor: []
Thiswill remove al Thor components.

Other options (for instance configuring the costs for cpu or file access) are implemented as a dictionary, so options
can be selectively set in a users valuesfile, and the other options will be retained.

Merging and Overriding

Having multiple yaml files, such as one for logging, another for storage, yet another for secrets and so forth, the files
can bein version control. They can be versioned, checked in, etc. and have the benefit of only defining/changing the
specific arearequired, while ensuring any non-changing areas are |eft untouched. Therule here to keep in mind where
multiple yaml files are applied, the later ones will always overwrite the values in the earlier ones. They are merged
in in sequence.

Another point to consider, where there isaglobal dictionary such asroot: and its value is redefined in the 2nd file (as
adictionary) it would not be overwritten. Y ou can't smply overwrite a dictionary. Y ou can redefine a dictionary and
set it to null (such asthe Thor examplein the previous section), which will effectively wipeit out.

WARNING: If you had a global definition (such as storage.planes) and merge it where that becomes redefined it
would wipe out every definitionin the list.

Another means to wipe out every valuein alist isto passin an empty set denoted by a[] such asthis example:
bundl es: []

This would wipe out any properties defined for bundles.

Generally applicable

These items are generally applicable for our HPCC Systems Helm yaml files.

* All names should be unique.

* All prefixes should be unique.

* Services should be unique.

» yaml files are merged in sequence.

Generally regarding the HPCC Systems components, the components are lists. As stated previoudly, If you have an
empty valuelist [], it would invalidate that list elsewhere.

Additional Usage

Components are added or modified by passing in overrides. Chart values are only overridden, either by passing in
override values file using -f, (for override file) or via --set where you can override a single value. Those passed in
values are always merged in the order they are given on the helm command line.

© 2022 HPCC Systems®. All rights reserved
33

Containerized HPCC Systems® Platform
Configuration Values

For example you can
hel minstall nmyhpcc hpcc/ hpcc -f myoverri des. yam
To override any values in the delivered values.yaml. Or you can use --set as in the following example:

hel minstall myhpcc hpcc/ hpcc --set storage. dali Storage. pl ane=dal i - pl ane

To override only the global.image.version value. Again, the order the values are merged in is the same in which they
are issued on the command line. Now consider:

hel minstall myhpcc hpcc/ hpcc -f nyoverrides.yaml --set storage.dali Storage. pl ane=dal i - pl ane

In the preceding example, the --set flag in the above command overrides the value for the storage.dali Storage.plane
(if) set inthe myoverrides.yaml, which overrides any values.yam file settings and resultsin setting it to dali-plane. So,
irrespective of the value in the yaml file for this particul ar setting, the order specified on the command line overwrites
it in the order supplied on the command line.

command line options

If the --set flag isused on helm install or helm upgrade, those values are simply converted to Y AML ontheclient side.
Y ou can specify the -f flag multiple times. The priority will be given to the last (right-most) file specified.

$ helminstall myhpcc hpcc/ hpce -f nyval ues.yam -f override. yan

For the above example, if both myvalues.yaml and override.yaml contained a key called Test', the value set in over-
ride.yaml would take precedence.

© 2022 HPCC Systems®. All rights reserved
34

Containerized HPCC Systems® Platform
Containerized Logging

Containerized Logging

Logging Background

Bare-metal HPCC Systems component logs are written to persistent files on local file system, In contrast, container-
ized HPCC logs are ephemeral, and their location is not always well defined. HPCC Systems components provide
informative application level logs for the purpose of debugging problems, auditing actions, and progress monitoring.

Following the most widely accepted containerized methodol ogies, HPCC Systems component log information is rout-
ed to the standard output streams rather than local files. In containerized depl oyments there aren't any component logs
written to files asin previous editions.

Theselogs are written to the standard error (stderr) stream. At the node level, the contents of the standard error and out
streams are redirected to a target location by a container engine. In a Kubernetes environment, the Docker container
engine redirects the streams to a logging driver, which Kubernetes configures to write to a file in JSON format. The
logs are exposed by Kubernetes viathe aptly named "logs' command.

For example:

>kubect| | ogs nyesp-6476c6659b-vqckq

>0000CFOF PRG | NF 2020- 05-12 17:10:34.910 1 10690 "HTTP First Line: GET / HITP/1.1"
>0000CF10 PRG | NF 2020- 05-12 17:10:34.911 1 10690 "GET /, from 10.240.0. 4"
>0000CF11 PRG | NF 2020-05-12 17:10:34.911 1 10690 “TxSummary[acti veReqs=22; rcv=5ns;total =6ns;]"

It isimportant to understand that these logs are ephemeral in nature, and may belost if the pod is evicted, the container
crashes, the node dies, etc. Also, due to the nature of containerized solutions, related logs are likely to originate from
various locations and might need to be collected and processed. It is highly recommended to develop a retention and
processing strategy based on your needs.

Many tools are available to help create an appropriate solution based on either a do-it-yourself approach, or managed
features available from cloud providers.

For the simplest of environments, it might be acceptable to rely on the standard Kubernetes process which forwards
all contents of stdout/stderr to file. However, as the complexity of the cluster grows or the importance of retaining the
logs' content grows, a cluster-level logging architecture should be employed.

Cluster-level logging for the containerized HPCC Systems cluster can be accomplished by including alogging agent
on each node. Thetask of each of agent isto exposethelogs or push them to alog processing backend. Logging agents
aregeneraly not provided out of the box, but there are several available such as Elasticsearch and Stackdriver L ogging.
Variouscloud providersoffer built-in solutionswhich automatically harvest all stdout/err streams and provide dynamic
storage and powerful analytic tools, and the ahility to create custom alerts based on log data.

It isyour responsihility to determine the appropriate solution to process the streaming log data.

© 2022 HPCC Systems®. All rights reserved
35

Containerized HPCC Systems® Platform
Containerized Logging

Log Processing Solutions

There are multiple available log processing solutions. Y ou could choose to integrate HPCC Systemslogging datawith
any of your existing logging solutions, or to implement another one specifically for HPCC Systems data. Starting with
HPCC Systems version 8.4, we provide a lightweight, yet complete log-processing solution for your convenience.
As stated there are several possible solutions, you should choose the option that best meets your requirements. The
following sections will look at two possible solutions.

The Elastic4hpcclogs chart

HPCC Systems provides a managed Helm chart, elastic4hpcclogs which utilizes the Elastic Stack Helm charts for
Elastic Search, Filebeats, and Kibana. This chart describes alocal, minimal Elastic Stack instance for HPCC Systems
component log processing. Once successfully deployed, HPCC component logs produced within the same namespace
should be automatically indexed on the Elastic Search end-point. Users can query those logs by issuing Elastic Search
RESTful API queries, or viathe Kibana Ul (after creating a simple index pattern).

Out of the box, the Filebeat forwards the HPCC component log entries to a generically named index: ‘file-
beat'-<VERSION>- <DATE_STAMP> and writesthelog datainto 'hpcc.log.*' prefixed fields. It also aggregates k8s,
Docker, and system metadata to help the user query the log entries of their interest.

A Kibanaindex pattern is created automatically based on the default filebeat index layout.

© 2022 HPCC Systems®. All rights reserved
36

Containerized HPCC Systems® Platform
Containerized Logging

Installing the elastic4hpcclogs chart

Installing the provided simple solution is as the name implies, simple and a convenient way to gather and filter log
data. It isinstalled via our helm charts from the HPCC Systems repository. In the HPCC-platform/helm directory, the
elasticdhpcclogs chart is delivered along with the other HPCC System platform components. The next sections will
show you how to install and set up the Elastic stack logging solution for HPCC Systems.

Add the HPCC Systems Repository

The delivered Elastic for HPCC Systems chart can be found in the HPCC Systems Helm repository. To fetch and
deploy the HPCC Systems managed charts, add the HPCC Systems Helm repository if you haven't done so already:

hel m repo add hpcc https://hpcc-systens. github.io/hel mchart/
Once this command has completed successfully, the elastic4hpcclogs chart will be accessible.

Confirm the appropriate chart was pulled down.

helmli st

Issuing the helm list command will display the available HPCC Systems charts and repositories. The elastic4hpcclogs
chart is among them.

E®¥ Windows PowerShell

Install the elastic4hpcc chart

Install the elasticdhpcclogs chart using the following command:

hel minstall <Instance_Nane> hpcc/ el asti c4hpccl ogs

Provide the name you wish to call your Elastic Search instance for the <Instance_Name> parameter. For example, you
could call your instance "myelk" in which case you would issue the install command as follows:

hel minstall nyel k hpcc/el asti c4hpccl ogs
Upon successful completion, the following message is displayed:

Thank you for installing el astic4hpcclogs.
A |ightweight Elastic Search instance for HPCC conponent | og processing.

Thi s depl oynent varies slightly fromdefaults set by Elastic, please reviewthe effective val ues.

PLEASE NOTE: El astic Search declares PVC(s) which mght require explicit manual renoval
when no | onger needed.

© 2022 HPCC Systems®. All rights reserved
37

Containerized HPCC Systems® Platform
Containerized Logging

removal when no longer needed. Thiscan be particularly important for some cloud providerswhich could
accrue costs even after no longer using your instance. Y ou should ensure no components (such as PV Cs)
persist and continue to accrue costs.

2 IMPORTANT: PLEASE NOTE: Elastic Search declares PV C(s) which might require explicit manual

NOTE: Depending on the version of Kubernetes, users might be warned about deprecated APIs in the Elastic charts
(ClusterRole and ClusterRoleBinding are deprecated in v1.17+). Deployments based on Kubernetes < v1.22 should
not be impacted.

Confirm Your Pods are Ready

Confirm the Elastic pods are ready. Sometimes after installing, pods can take a few seconds to come up. Confirming
the pods arein aready state is a good idea before proceeding. To do this, use the following command:

kubect| get pods

This command returns the following information, displaying the status of the of the pods.

el asti csearch-master-0 1/1 Runni ng 0
myel k-fi | ebeat - 6wd2g 1/1 Runni ng 0
nmyel k- ki bana- 68688b4d4d- d489b 1/1 Runni ng 0

EX Windows PowerShell

:\hd4l> kubectl get pods
STATUS RESTARTS
Running ©
Running

Running
Running
Running

SE
Running
Running
Running
Running
Running
Running
server-7658ddcd-21bg2 1f Running
6b54-zdqcd 1/ Running
574c9d68c-shkj 4
5+A49b549bF - bxmn
-debFBAFT -F2wwk
TFA8ccSc78-Thwfa

0
e
e
(]
e
]
e

@

Once dl the pods are indicating a 'ready’ state and 'Running’, including the three components for filebeats, Elastic
Search, and Kibana (highlighted above) you can proceed.

Confirming the Elastic Services

To confirm the Elastic services are running, issue the following command:

$ kubect| get svc

This displays the following confirmation information:

el asti csearch-master Clusterl P 10.109. 50. 54 <none> 9200/ TCP, 9300/ TCP 68m
el asti csearch-nmast er- headl ess Cl usterl P None <none> 9200/ TCP, 9300/ TCP 68m
nmyel k- ki bana LoadBal ancer 10.110.129. 199 | ocal host 5601: 31465/ TCP 68m

© 2022 HPCC Systems®. All rights reserved
38

Containerized HPCC Systems® Platform
Containerized Logging

Note: The myelk-kibana service is declared as L oadBalancer for convenience.

Configuring of Elastic Stack Components

Y ou may need or want to customise the Elastic stack components. The Elastic component charts values can be over-
ridden as part of the HPCC System deployment command.

For example:

hel minstall nyel k hpcc/ el asti c4hpccl ogs --set el asticsearch.replicas=2

Please see the Elastic Stack GitHub repository for the completelist of all Filebeat, Elastic Search, LogStash and Kibana
options with descriptions.

Use of HPCC Systems Component Logs in Kibana

Once enabled and running, you can explore and query HPCC Systems component logs from the Kibana user interface.
Using the Kibana interface is well supported and documented. Kibana index patterns are required to explore Elastic
Search data from the Kibana user interface. Elastic provides detailed explanations of the information required to un-
derstand and effectively utilize the Elastic-Kibanainterface. Kibana's robust documentation, should be referred to for
more information about using the Kibanainterface. Please see:

https://www.€el astic.co/

and

https.//www.el astic.co/el astic-stack/

Included among the compl ete documentation are also quick start videos and other helpful resources.

© 2022 HPCC Systems®. All rights reserved
39

Containerized HPCC Systems® Platform
Containerized Logging

Azure AKS Insights

Azure AKS Insights is an optional feature designed to help monitor performance and health of Kubernetes based
clusters. Once enabled and associated a given AKS with an active HPCC System cluster, the HPCC component logs
are automatically captured by Insights. All STDERR/STDOUT data is captured and made available for monitoring
and/or querying purposes. Asis usually the case with cloud provider features, cost is a significant consideration and
should be well understood before implementation. Log content is written to the logs store associated with your Log
Analytics workspace.

Enabling Azure Insights

Enabling Azure's Insights on the target AK S cluster can be done from the Azure portal or viaCLI. For detailed Azure
documentation: Enable Container insights:

https://docs.microsoft.com/en-us/azure/azure-monitor/contai ners/contai ner-insights-onboard

Azure Portal

To enable the Azure insights on the Azure portal:
1. Select Target AKS cluster

2. Select Monitoring

3. Select Insights

4. Enable - choose default workspace

Command Line
To enable the Azure insights from the command line:
Optionally, create log-analytics workspace [default workspace otherwise]

Enter:

az nonitor |og-anal ytics workspace create -g nyresourcegroup -n nmyworkspace --query-access Enabl ed

Enable on target AK S cluster (reference the workspace resource id from the previous step)

az aks enabl e-addons -g nyresourcegroup -n nmyaks -a nonitoring --workspace-resource-id \
"/ subscri ptions/xyz/resourcegroups/ myresour cegroup/ provi ders/ \
m crosoft. operationalinsi ghts/workspaces/ nywor kspace"

The AKS Insights interface on Azure provides Kubernetes-centric cluster/node/container-level health metrics visual-
izations, and direct links to container logs via "log analytics' interfaces. The logs can be queried via “Kusto” query

language (KQL).
See the Azure documentation for specifics on how to query the logs.

Example KQL query for fetching "Transaction summary" log entries from an ECLWatch container:

| et ContainerldLi st = KubePodl nvent ory

| where Container Name =~ 'xyz/nyesp'

| where Custerld =~ '/subscriptions/xyz/resourceG oups/ xyz/ provi ders/ M crosoft.
Cont ai ner Servi ce/ managedCl ust er s/ aks- cl ust er xyz'

© 2022 HPCC Systems®. All rights reserved
40

Containerized HPCC Systems® Platform
Containerized Logging

| distinct ContainerlD;

Cont ai ner Log

| where LogEntry contains "TxSunmary["
| where ContainerlD in (ContainerldList)

| project LogEntrySource, LogEntry, TinmeGenerated, Conputer, |nage, Nane, ContainerlD
| order by TineGenerated desc

| render table

Sample output

21, Pr00:id. 000 PH promet heus esp_requests_active @ ["app”:"eclservices”,"namespace”™: "default”™,"pod_namse™:"eclservices-7
1, Fr02:00.000 PH prometheus esp_requests_active 3 [“app”:“eclservices”,“namespace”: “default™,“pod_name™:“eclservices-7

More complex queries can be formulated to fetch specific information provided in any of the log columns including
unformatted datain the log message. The Insightsinterface facilitates creation of aerts based on those queries, which
can be used to trigger emails, SMS, Logic App execution, and many other actions.

© 2022 HPCC Systems®. All rights reserved
41

Containerized HPCC Systems® Platform
Containerized Logging

Controlling HPCC Systems Logging
Output

The HPCC Systems logs provide a wealth of information which can be used for benchmarking, auditing, debugging,
monitoring, etc. The type of information provided in the logs and its format is trivially controlled via standard Helm
configuration. Keep in mind in container mode, every line of logging output is liable to incur a cost depending on the
provider and plan you have and the verbosity should be carefully controlled using the following options.

By default, the component logs are not filtered, and contain the following columns;

Messagel D Tar get Audi ence LogEntryCl ass Jobl D DateStanp Ti neStanp Processld Threadl D Quot edLogMessage

Thelogs can befiltered by TargetAudience, Category, or Detail Level. Further, the output columns can be configured.
Logging configuration settings can be applied at the global, or component level.

Target Audience Filtering

The availble target audiences include operator(OPR), user(USR), programmer(PRO), audit(ADT), or al. Thefilter is
controlled by the <section>.logging.audiences value. The string value is comprised of 3 letter codes delimited by the
aggregation operator (+) or the removal operator (-).

For example, all component log output to include Programmer and User messages only:

hel minstall myhpcc ./hpcc --set gl obal .| oggi ng. audi ences="PRO+USR"

Target Category Filtering

The available target categoriesinclude disaster(DI1S), error(ERR), information(INF), warning(WRN), progress(PRO),
metrics(MET). The category (or class) filter is controlled by the <section>.logging.classes value, comprised of 3 letter
codes delimited by the aggregation operator (+) or the removal operator (-).

For example, the mydali instance's log output to include all classes except for progress:

helminstall myhpcc ./hpcc --set dali[0].|ogging.classes="ALL-PRO" --set dali[0].name="nydali"

Log Detail Level Configuration

Log output verbosity can be adjusted from "critical messages only” (1) up to "report all messages' (100). The default
log level israther high (80) and should be adjusted accordingly.

For example, verbosity should be medium for all components:

hel minstall myhpcc ./hpcc --set global.l ogging. detail ="50"

Log Data Column Configuration

The available log data columns include messageid(MID), audience(AUD), class(CLS), date(DAT), time(TIM),
node(NOD), millitime(MLT), microtime(MCT), nanotime(NNT), processid(PID), threadid(TID), job(JOB),
use(USE), session(SES), code(COD), component(COM), quotedmessage(QUO), prefix(PFX), al(ALL), and stan-
dard(STD). The log data columns (or fields) configuration is controlled by the <section>.logging.fields value, com-
prised of 3 letter codes delimited by the aggregation operator (+) or the removal operator (-).

For example, al component log output should include the standard columns except the job ID column:

© 2022 HPCC Systems®. All rights reserved
42

Containerized HPCC Systems® Platform
Containerized Logging

hel minstall myhpcc ./hpcc --set global.logging.fields="STD JOB"

Adjustment of per-component logging values can require assertion of multiple component specific values, which can
be inconvinient to do via the --set command line parameter. In these cases, a custom values file could be used to set
all required fields.

For example, the ESP component instance ‘eclwatch’ should output minimal log:

hel minstall nmyhpcc ./hpcc --set -f ./exanples/| oggi ng/ esp-ecl wat ch-1 ow | oggi ng-val ues. yani

© 2022 HPCC Systems®. All rights reserved
43

	Containerized HPCC Systems® Platform
	Table of Contents
	Containerized HPCC Overview
	Bare-metal vs Containers
	Processes and pods, not machines
	Helm charts
	Static vs On-Demand Services
	Topology settings – Clusters vs queues

	Local Deployment (Development and Testing)
	Prerequisites
	Add a repository
	Start a default system
	Use the default system
	Terminate (Decommission) the system

	Storage
	Persistent Storage for a Local Deployment
	Import: Storage Planes and how to use them

	Customizing Configurations
	Customization Techniques
	Create a Custom Configuration Chart for Two Roxies
	Create a Custom Configuration Chart for Two Thors

	Configuration Values
	The Container Environment
	The values.yaml and how it is used
	The values-schema.json

	HPCC Systems Components in the values.yaml File
	The HPCC Systems Components
	Dali
	Components: dafilesvrs, dfuserver
	ECL Agent and ECLCC Server
	Sasha
	Thor

	The HPCC Systems values.yaml file
	Storage
	Storage Category
	Ephemeral Storage
	Persistent Storage
	Bare Metal Storage

	Storage Items for HPCC Systems Components
	General Data Storage
	LZ
	dali
	dll
	sasha
	spill
	temp

	The Security Values
	Certificates
	Secrets
	Vaults

	Replicas and Resources
	Replicas
	Resources
	Taints, Tolerations, and placements
	Placements

	More Helm and Yaml
	The values.yaml file structure
	Dictionary
	Lists

	Global
	Image
	The Root value
	Other Chart Values

	Usage
	Use Case
	Merging and Overriding
	Generally applicable

	Additional Usage
	command line options

	Containerized Logging
	Logging Background
	Log Processing Solutions
	The Elastic4hpcclogs chart

	Installing the elastic4hpcclogs chart
	Add the HPCC Systems Repository
	Install the elastic4hpcc chart
	Confirm Your Pods are Ready
	Confirming the Elastic Services
	Configuring of Elastic Stack Components
	Use of HPCC Systems Component Logs in Kibana

	Azure AKS Insights
	Enabling Azure Insights
	Azure Portal
	Command Line

	Controlling HPCC Systems Logging Output
	Target Audience Filtering
	Target Category Filtering
	Log Detail Level Configuration
	Log Data Column Configuration

