
Containerized HPCC Systems®
Platform
Boca Raton Documentation Team

Containerized HPCC Systems® Platform

Containerized HPCC Systems® Platform
Boca Raton Documentation Team
Copyright © 2022 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2022 Version 8.6.12-1

© 2022 HPCC Systems®. All rights reserved
2

Containerized HPCC Systems® Platform

Containerized HPCC Overview ... 4
Bare-metal vs Containers .. 5

Local Deployment (Development and Testing) ... 7
Prerequisites ... 7
Add a repository ... 7
Start a default system .. 8
Use the default system ... 10
Terminate (Decommission) the system .. 11

Storage .. 12
Persistent Storage for a Local Deployment ... 12
Import: Storage Planes and how to use them .. 14

Customizing Configurations .. 15
Customization Techniques ... 15

Configuration Values ... 19
The Container Environment .. 19
HPCC Systems Components in the values.yaml File .. 20
The HPCC Systems values.yaml file ... 24
More Helm and Yaml .. 30

Containerized Logging ... 35
Logging Background .. 35
Log Processing Solutions .. 36
Installing the elastic4hpcclogs chart .. 37
Azure AKS Insights ... 40
Controlling HPCC Systems Logging Output .. 42

© 2022 HPCC Systems®. All rights reserved
3

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Containerized HPCC Overview
Starting with version 8.0, the HPCC Systems® Platform is focusing on containerized deployments. This is useful for
cloud-based deployments (large or small) or local testing/development deployments.

Docker containers managed by Kubernetes (K8s) is a new target operating environment, alongside continued support
for traditional “bare metal” installations using .deb or .rpm installer files. Support for traditional installers continues
and that type of deployment is viable for bare metal deployments or manual setups in the Cloud.

This is not a lift and shift type change, where the platform runs its legacy structure unchanged and treat the containers as
just a way of providing virtual machines on which to run, but a significant change in how components are configured,
how and when they start up, and where they store their data.

This book focuses on containerized deployments. The first section is about using Docker containers and Helm charts
locally. Docker and Helm do a lot of the work for you. The second part uses the same techniques in the cloud.

For local small deployments (for development and testing), we suggest using Docker Desktop and Helm. This is useful
for learning, development, and testing.

For Cloud deployments, you can use any flavor of Cloud services, if it supports Docker, Kubernetes, and Helm. This
book, however, will focus on Microsoft Azure for Cloud Services. Future versions may include specifics for other
Cloud providers.

If you want to manually manage your local or Cloud deployment, you can still use the traditional installers and Con-
figuration Manager, but that removes many of the benefits that Docker, Kubernetes, and Helm provide, such as, in-
strumentation, monitoring, scaling, and cost control.

HPCC Systems adheres to standard conventions regarding how Kubernetes deployments are normally configured and
managed, so it should be easy for someone familiar with Kubernetes and Helm to install and manage the HPCC
Systems platform.

Note: The traditional bare-metal version of the HPCC Systems platform is mature and has been heavily used in
commercial applications for almost two decades and is fully intended for production use. The containerized
version is new and is not yet 100% ready for production. In addition, aspects of that version could change
without notice. We encourage you to use it and provide feedback so we can make this version as robust as
a bare-metal installation.

© 2022 HPCC Systems®. All rights reserved
4

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Bare-metal vs Containers
If you are familiar with the HPCC Systems platform, there are a few fundamental changes to note.

Processes and pods, not machines
Anyone familiar with the existing configuration system will know that part of the configuration involves creating
instances of each process and specifying on which physical machines they should run.

In a Kubernetes world, this is managed dynamically by the K8s system itself (and can be changed dynamically as
the system runs).

Additionally, a containerized system is much simpler to manage if you stick to a one process per container paradigm,
where the decisions about which containers need grouping into a pod and which pods can run on which physical nodes,
can be made automatically.

Helm charts
In the containerized world, the information that the operator needs to supply to configure an HPCC Systems environ-
ment is greatly reduced. There is no need to specify any information about what machines are in use by what process,
as mentioned above, and there is also no need to change a lot of options that might be dependent on the operating
environment, since much of that was standardized at the time the container images were built.

Therefore, in most cases, most settings should be left to use the default. As such, the new configuration paradigm
requires only the bare minimum of information be specified and any parameters not specified use the appropriate
defaults.

The default environment.xml that we include in our bare-metal packages to describe the default single-node system
contains approximately 1300 lines and it is complex enough that we recommend using a special tool for editing it.

The values.yaml from the default helm chart is relatively small and can be opened in any editor, and/or modified via
helm’s command-line overrides. It also is self-documented with extensive comments.

Static vs On-Demand Services
In order to realize the potential cost savings of a cloud environment while at the same time taking advantage of the
ability to scale up when needed, some services which are always-on in traditional bare-metal installations are launched
on-demand in containerized installations.

For example, an eclccserver component launches a stub requiring minimal resources, where the sole task is to watch
for workunits submitted for compilation and launch an independent K8s job to perform the actual compile.

Similarly, the eclagent component is also a stub that launches a K8s job when a workunit is submitted and the Thor stub
starts up a Thor cluster only when required. Using this design, not only does the capacity of the system automatically
scale up to use as many pods as needed to handle the submitted load, it scales down to use minimal resources (as little
as a fraction of a single node) during idle times when waiting for jobs to be submitted.

ESP and Dali components are always-on as long as the K8s cluster is started--it isn’t feasible to start and stop them on
demand without excessive latency. However, ESP can be scaled up and down dynamically to run as many instances
needed to handle the current load.

Topology settings – Clusters vs queues
In bare-metal deployments, there is a section called Topology where the various queues that workunits can be submitted
to are set up. It is the responsibility of the person editing the environment to ensure that each named target has the

© 2022 HPCC Systems®. All rights reserved
5

Containerized HPCC Systems® Platform
Containerized HPCC Overview

appropriate eclccserver, hThor (or ROXIE) and Thor (if desired) instances set up, to handle workunits submitted to
that target queue.

This setup has been greatly simplified when using Helm charts to set up a containerized system. Each named Thor or
eclagent component creates a corresponding queue (with the same name) and each eclccserver listens on all queues by
default (but you can restrict to certain queues only if you really want to). Defining a Thor component automatically
ensures that the required agent components are provisioned.

© 2022 HPCC Systems®. All rights reserved
6

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Local Deployment (Development and
Testing)

While there are many ways to install a local single node HPCC Systems Platform, this section focuses on using Docker
Desktop.

Prerequisites

All third-party tools should be 64-bit versions.

Add a repository
To use the HPCC Systems helm chart, you must add it to the helm repository list, as shown below:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Expected response:

"hpcc" has been added to your repositories

To update to the latest charts:

helm repo update

Expected response:

Update Complete. Happy Helming!

© 2022 HPCC Systems®. All rights reserved
7

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Start a default system
The default helm chart starts a simple test system with Dali, ESP, eclccserver, two eclagent queues (ROXIE and hThor
mode), and one Thor queue.

To start this simple system:

helm install mycluster hpcc/hpcc --version=8.2.2

The --version argument is optional, but recommended. It ensures that you know which version you are in-
stalling. If omitted, the latest non-development version is installed. This example uses 8.2.2, but you should use
the version you want.

Expected response:

NAME: mycluster
LAST DEPLOYED: Tue Mar 23 13:26:55 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing the HPCC chart.

This chart has defined the following HPCC components:
dali.mydali
dfuserver.dfuserver
eclagent.hthor
eclagent.roxie-workunit
eclccserver.myeclccserver
esp.eclwatch
esp.eclservices
esp.eclqueries
esp.esdl-sandbox
esp.sql2ecl
esp.dfs
roxie.roxie
thor.thor
sasha.dfurecovery-archiver
sasha.dfuwu-archiver
sasha.file-expiry
sasha.wu-archiver

To check status:

kubectl get pods

Expected response:

NAME READY STATUS RESTARTS AGE
eclqueries-7fd94d77cb-m7lmb 1/1 Running 0 2m6s
eclservices-b57f9b7cc-bhwtm 1/1 Running 0 2m6s
eclwatch-599fb7845-2hq54 1/1 Running 0 2m6s
esdl-sandbox-848b865d46-9bv9r 1/1 Running 0 2m6s
hthor-745f598795-ql9dl 1/1 Running 0 2m6s
mydali-6b844bfcfb-jv7f6 2/2 Running 0 2m6s
myeclccserver-75bcc4d4d-gflfs 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-tl7bb 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-xzrtf 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-m22wl 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-xmlmk 1/1 Running 0 2m6s

© 2022 HPCC Systems®. All rights reserved
8

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

roxie-toposerver-695fb9c5c7-9lnp5 1/1 Running 0 2m6s
roxie-workunit-d7446699f-rvf2z 1/1 Running 0 2m6s
sasha-dfurecovery-archiver-78c47c4db7-k9mdz 1/1 Running 0 2m6s
sasha-dfuwu-archiver-576b978cc7-b47v7 1/1 Running 0 2m6s
sasha-file-expiry-8496d87879-xct7f 1/1 Running 0 2m6s
sasha-wu-archiver-5f64594948-xjblh 1/1 Running 0 2m6s
sql2ecl-5c8c94d55-tj4td 1/1 Running 0 2m6s
dfs-4a9f12621-jabc1 1/1 Running 0 2m6s
thor-eclagent-6b8f564f9c-qnczz 1/1 Running 0 2m6s
thor-thoragent-56d788869f-7trxk 1/1 Running 0 2m6s

Note: It may take a while before all components are running, especially the first time as the container images need
to be downloaded from Docker Hub.

© 2022 HPCC Systems®. All rights reserved
9

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Use the default system
Your system is now ready to use. The usual first step is to open ECL Watch.

Note: Some pages in ECL Watch, such as those displaying topology information, are not yet fully functional in
containerized mode.

Use this command to get a list running services and IP addresses:

kubectl get svc

Expected response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclqueries LoadBalancer 10.108.171.35 localhost 8002:31615/TCP 2m6s
eclservices ClusterIP 10.107.121.158 <none> 8010/TCP 2m6s
eclwatch LoadBalancer 10.100.81.69 localhost 8010:30173/TCP 2m6s
esdl-sandbox LoadBalancer 10.100.194.33 localhost 8899:30705/TCP 2m6s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2m6s
mydali ClusterIP 10.102.80.158 <none> 7070/TCP 2m6s
roxie LoadBalancer 10.100.134.125 localhost 9876:30480/TCP 2m6s
roxie-toposerver ClusterIP None <none> 9004/TCP 2m6s
sasha-dfuwu-archiver ClusterIP 10.110.200.110 <none> 8877/TCP 2m6s
sasha-wu-archiver ClusterIP 10.111.34.240 <none> 8877/TCP 2m6s
sql2ecl LoadBalancer 10.107.177.180 localhost 8510:30054/TCP 2m6s
dfs LoadBalancer 10.100.52.9 localhost 8520:30184/TCP 2m6s

Notice the eclwatch service is running on localhost:8010. Use that address in your browser to access ECL Watch.

Inside ECL Watch, press the ECL button and go to the Playground tab.

From here you can use the example ECL or enter other test queries and pick from the available clusters available to
submit your workunits.

© 2022 HPCC Systems®. All rights reserved
10

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Terminate (Decommission) the system
To check which Helm charts are currently installed, run this command:

helm list

To stop the HPCC Systems pods, use helm to uninstall:

helm uninstall mycluster

This stops the cluster, deletes the pods, and with the default settings and persistent volumes, it also deletes the storage
used.

© 2022 HPCC Systems®. All rights reserved
11

Containerized HPCC Systems® Platform
Storage

Storage

Persistent Storage for a Local Deploy-
ment
When running on a single-node test system such as Docker Desktop, the default storage class normally means that all
persistent volume claims (PVCs) map to temporary local directories on the host machine. These are typically removed
when the cluster is stopped. This is fine for testing but for any real application, you want persistent storage.

To persist data with Docker Desktop, the first step is to make sure the relevant directories exist:

1. Create data directories using a terminal interface:

For Windows, use this command:

mkdir c:\hpccdata
mkdir c:\hpccdata\dalistorage
mkdir c:\hpccdata\queries
mkdir c:\hpccdata\sasha
mkdir c:\hpccdata\hpcc-data
mkdir c:\hpccdata\mydropzone

For macOS, use this command:

mkdir -p /Users/myUser/hpccdata/{dalistorage,queries,sasha,hpcc-data,mydropzone}

Note: If all of these folders do not exist, your cluster may not start.

2. Download the HPCC Platform Helm charts.

These are available in the HPCC Systems HPCC-Platform repository on GitHub (https://github.com/hpcc-sys-
tems/HPCC-Platform).

If you want only the helm charts, the use the helm-chart repository (https://github.com/hpcc-systems/helm-chart).

3. Open a terminal and navigate to the helm folder of the repository you just downloaded.

4. Install the Helm chart from the examples/local directory in your local repository.

This chart creates persistent volumes based on host directories you created earlier.

for a WSL2 deployment:
helm install hpcc-localfile examples/local/hpcc-localfile
 --set common.hostpath=/run/desktop/mnt/host/c/hpccdata

for a Hyper-V deployment:
helm install hpcc-localfile examples/local/hpcc-localfile --set common.hostpath=/c/hpccdata

for a macOS deployment:
helm install hpcc-localfile examples/local/hpcc-localfile --set common.hostpath=/Users/myUser/hpccdata

The --set common.hostpath= option specifies the base directory:

The path /run/desktop/mnt/host/c/hpccdata provides access to the host file system for WSL2.

The path /c/hpccdata provides access to the host file system for Hyper-V.

© 2022 HPCC Systems®. All rights reserved
12

Containerized HPCC Systems® Platform
Storage

The path /Users/myUser/hpccdata provides access to the host file system for Mac OSX.

Note: The value passed to --set common-hostpath is case sensitive.

5. If you are using Docker Desktop with Hyper-V, add the shared data folder (in this example, C:\hpccdata) in the
Docker Desktop settings.

This is not needed in a macOS or WSL 2 environment.

6. Finally, install the hpcc Helm chart, and provide a yaml file that provides storage information that uses the PVCs
created by the previous step.

The example directory contains a sample yaml file that can be used in this case:

helm install mycluster hpcc/ --version=8.2.2
 -f examples/local/values-localfile.yaml

The --version argument is optional, but recommended. It ensures that you know which version you are in-
stalling. If omitted, the latest non-development version is installed. This example uses 8.2.2, but you should
use the version you want.

7. To test, create some data files and workunits by submitting to Thor some ECL code like the following:

LayoutPerson := RECORD
 UNSIGNED1 ID;
 STRING15 FirstName;
 STRING25 LastName;
END;
allPeople := DATASET([{1,'Fred','Smith'},
 {2,'Joe','Jones'},
 {3,'Jane','Smith'}],LayoutPerson);
OUTPUT(allPeople,,'MyData::allPeople',THOR,OVERWRITE);

8. Use the helm uninstall command to terminate your clusters, then restart.

9. Open ECL Watch and notice your workunits and logical files are still there.

© 2022 HPCC Systems®. All rights reserved
13

Containerized HPCC Systems® Platform
Storage

Import: Storage Planes and how to use
them
Storage planes provide the flexibility to configure where the data is stored within an HPCC Systems platform, but it
doesn't directly address the question of how to get data onto the platform in the first place.

Containerized platforms support importing data in two ways:

• Upload to a Landing Zone and Spray (not yet implemented in the containerized version)

• Copy to a Storage Plane and access directly

Beginning with version 7.12.0, new ECL syntax was added to access files directly from a storage plane. This is similar
to the file:: syntax used to directly read files from a physical machine, typically a landing zone.

The new syntax is:

~plane::<storage-plane-name>::<path>::<filename>

Where the syntax of the path and filename are the same as used with the file:: syntax. This includes requiring uppercase
letters to be quoted with a ^ symbol. For more details, see the Landing Zone Files section of the ECL Language
Reference.

If you have storage plane configured as in the previous section, and you copy the originalperson file to C:\hpccda-
ta\hpcc-data\tutorial, you can then reference the file using this syntax:

'~plane::data::tutorial::originalperson'

Note: The originalperson file is available from the HPCC Systems Web site (https://cdn.hpccsystems.com/install/doc-
s/3_8_0_8rc_CE/OriginalPerson)

© 2022 HPCC Systems®. All rights reserved
14

Containerized HPCC Systems® Platform
Customizing Configurations

Customizing Configurations

Customization Techniques
In this section, we will walk through creating a custom configuration YAML file and deploying an HPCC Systems®

platform using the default configuration plus the customizations. Once you understand the concepts in this chapter,
you can refer to the next chapter for a reference to all configuration value settings.

There are several ways to customize a platform deployment. We recommend using methods that allow you to best
take advantage of the configuration as code (CaC) practices. Configuration as code is the standard of managing con-
figuration files in a version control system or repository.

The following is a list of common customization techniques:

• The first way to override a setting in the default configuration is via the command line using the --set parameter.

This is the easiest, but the least compliant with CaC guidelines. It is also harder to keep track of overrides this way.

• The second way is to modify the default values saved using a command like:

helm show values hpcc/hpcc > myvalues.yaml

This could comply with CaC guidelines if you place that file under version control, but it makes it harder to utilize
a newer default configuration when one becomes available.

• The third way, is the one we typically use. Use the default configuration plus a customization YAML file and
use the -f parameter (or --values parameter) to the helm command. This uses the default configuration and only
overrides the settings specified in the customization YAML. In addition, you can pass multiple YAML files in the
same command, if desired.

For this tutorial, we will use the third method to stand up a platform with all the default settings but add some
customizations. In the first example, instead of one Roxie, it will have two. In the second example, it will add a
second 10-way Thor.

© 2022 HPCC Systems®. All rights reserved
15

Containerized HPCC Systems® Platform
Customizing Configurations

Create a Custom Configuration Chart for Two Roxies
1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it tworoxies.yaml and open it in a text editor.

You can use any text editor.

3. Save the default values to a text file:

helm show values hpcc/hpcc > myvalues.yaml

4. Open the saved file (myvalues.yaml) in a text editor.

5. Copy the entire roxie: section and paste it into the new tworoxies.yaml file.

6. Copy the entire contents of the new tworoxies.yaml file, except the first line (roxie:), and paste it at the end of the file.

7. In the second block, edit the value for name: and change it to roxie2.

8. In the second block, edit the value for prefix: and change it to roxie2.

9. In the second block, edit the value for name: under services: and change it to roxie2.

10.Save the file and close the text editor.

The resulting tworoxies.yaml file should look like this

Note: The comments have been removed to simplify the example:

roxie:
- name: roxie
 disabled: false
 prefix: roxie
 services:
 - name: roxie
 servicePort: 9876
 listenQueue: 200
 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

- name: roxie2
 disabled: false
 prefix: roxie2
 services:
 - name: roxie2
 servicePort: 9876
 listenQueue: 200

© 2022 HPCC Systems®. All rights reserved
16

Containerized HPCC Systems® Platform
Customizing Configurations

 numThreads: 30
 visibility: local
 replicas: 2
 numChannels: 2
 serverReplicas: 0
 localAgent: false
 traceLevel: 1
 topoServer:
 replicas: 1

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the tworoxies.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

helm install mycluster hpcc/hpcc -f tworoxies.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Roxie clusters available as Targets -- roxie and roxie2.

Create a Custom Configuration Chart for Two Thors
You can specify more than one custom configuration by repeating the -f parameter.

For example:

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

In this section, we will add a second 10-way Thor.

1. If you have not already added the HPCC Systems repository to the helm repository list, add it now.

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

If you have added it, update to the latest charts:

helm repo update

2. Create a new text file and name it twothors.yaml and open it in a text editor.

You can use any text editor.

3. Open the default values file that you saved earlier (myvalues.yaml) in a text editor.

4. Copy the entire thor: section and paste it into the new twothors.yaml file.

5. Copy the entire contents of the new twothors.yaml file, except the first line (thor:), and paste it at the end of the file.

6. In the second block, edit the value for name: and change it to thor10.

7. In the second block, edit the value for prefix: and change it to thor10.

8. In the second block, edit the value for numWorkers: and change it to 10.

9. Save the file and close the text editor.

The resulting twothors.yaml file should look like this

© 2022 HPCC Systems®. All rights reserved
17

Containerized HPCC Systems® Platform
Customizing Configurations

Note: The comments have been removed to simplify the example:

thor:
- name: thor
 prefix: thor
 numWorkers: 2
 maxJobs: 4
 maxGraphs: 2
- name: thor10
 prefix: thor10
 numWorkers: 10
 maxJobs: 4
 maxGraphs: 2

Deploy using the new custom configuration chart.

1. Open a terminal and navigate to the folder where you saved the twothors.yaml file.

2. Deploy your HPCC Systems Platform, adding the new configuration to your command:

If you have previously stopped your cluster

helm install mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

To upgrade without stopping

helm upgrade mycluster hpcc/hpcc -f tworoxies.yaml -f twothors.yaml

3. After you confirm that your deployment is running, open ECL Watch.

You should see two Thor clusters available as Targets -- thor and thor10.

© 2022 HPCC Systems®. All rights reserved
18

Containerized HPCC Systems® Platform
Configuration Values

Configuration Values
This chapter describes the configuration of HPCC Systems for a Kubernetes Containerized deployment. The following
sections detail how configurations are supplied to helm charts, how to find out what options are available and some
details of the configuration file structure. Subsequent sections will also provide a brief walk through of some of the
contents of the default values.yaml file used in configuring the HPCC Systems for a containerized deployment.

The Container Environment
One of the ideas behind our move to the cloud was to try and simplify the system configuration while also delivering a
solution flexible enough to meet the demands of our community while taking advantage of container features without
sacrificing performance.

The entire HPCC Systems configuration in the container space, is governed by a single file, a values.yaml file, and
its associated schema file.

The values.yaml and how it is used
The values.yaml file is the delivered configuration values for a Helm chart. The values.yaml file is used by the Helm
chart to control how HPCC Systems is deployed to the cloud. This values file is one file used to configure and get
an HPCC Systems instance up and running on Kubernetes. The values.yaml file defines everything that happens to
configure and/or define your system for a containerized deployment. You should use the values file provided as a basis
for modeling the specific customizations for your deployment specific to your requirements.

The HPCC Systems values.yaml file can be found in the HPCC Systems github repository. To use the HPCC Systems
Helm chart, first add the hpcc chart repository using Helm, then access the Helm chart values from the charts in that
repository.

For example, when you add the "hpcc" repository, as recommended prior to installing the Helm chart with the following
command:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart

You can now view the HPCC Systems delivered charts and see the values there by issuing:

helm show values hpcc/hpcc

You can capture the output of this command, look at how the defaults are configured and use it as a basis for your
customization.

© 2022 HPCC Systems®. All rights reserved
19

Containerized HPCC Systems® Platform
Configuration Values

The values-schema.json
The values-schema.json is a JSON file that declares what is valid and what is not within the sum total of the merged
values that are passed into Helm at install time. It defines what values are allowed, and validates the values file against
them. All the core items are declared in the schema file, while the default values.yaml file also contains comments
on the most important elements. If you wanted to know what options are available for any particular component then
the schema is a good place to start.

The schema file typically contains (for a property) a name and a description. It will often include details of the type,
and the items it can contain if it is a list or dictionary. For instance:

 "roxie": {
 "description": "roxie process",
 "type": "array"
 "items": { "$ref": "#/definitions/roxie" }
 },

Each plane, in the schema file has a list of properties generally containing a prefix (path), a subpath (subpath), and
additional properties. For example, for a storage plane the schema file has a list of properties including the prefix. The
"planes" in this case are a reference ($ref) to another section of the schema. The schema file should be complete, and
contain everything required including descriptions which should be relatively self-explanatory.

 "storage": {
 "type": "object",
 "properties": {
 "hostGroups": {
 "$ref": "#/definitions/hostGroups"
 },
 "planes": {
 "$ref": "#/definitions/storagePlanes"
 }
 },
 "additionalProperties": false

Note the additionalProperties value typically at the end of each section in the schema. It specifies whether the values
allow for additional properties or not. If that additionalProperties value is present and set to false, then no other
properties are allowed and the property list is complete.

In working with the HPCC Systems values.yaml, the values file must validate against this schema. If there is a value
that is not allowed as defined in the schema file it will not start and instead generate an ERROR.

HPCC Systems Components in the val-
ues.yaml File
The HPCC Systems Helm charts all ship with stock/default values. These Helm charts have a set of default values
ideally to be used as a guide in configuring your deployment. Generally, every HPCC Systems component is a list.
That list defines the properties for each instance of the component.

This section will provide additional details and any noteworthy insight for the HPCC Systems components defined
in the values.yaml file.

The HPCC Systems Components
One of the key differences between the bare metal and container/cloud is that in bare metal storage is directly tied to
the Thor or the Thor worker nodes, and the Roxie worker nodes, or even in the case of the ECLCC Server the DLLs.
In containers these are completely separate and anything having to do with files is defined in the values.yaml.

© 2022 HPCC Systems®. All rights reserved
20

Containerized HPCC Systems® Platform
Configuration Values

In containers component instances run dynamically. For instance, if you have configured your system to use a 50-way
Thor, then a 50-way Thor will be spawned when a job is queued to it. When that job is finished that Thor instance will
disappear. This is the same pattern for the other components as well.

Every component should have a resources entry, in the delivered values.yaml file the resources are present but com-
mented out as indicated here.

 #resources:
 # cpu: "1"
 # memory: "4G"

The stock values file will work and allow you to stand up a functional system, however you should define the compo-
nent resources in a manner that corresponds best to your operational strategy.

Dali

When configuring Dali, which also has a resources section, it is going to want plenty of memory and a good amount of
CPU as well. It is very important to define these carefully. Otherwise Kubernetes could assign all the pods to the same
virtual machine and components fighting for memory will crush them. Therefore more memory assigned the better. If
you define these wrong and a process uses more memory than configured, Kubernetes will kill the pod.

Components: dafilesvrs, dfuserver

The HPCC Systems components of dafilesvrs, eclccservers, dfuserver, are declared as lists in the yaml, as is the ECL
Agent.

Consider the dfuserver which is in the delivered HPCC Systems values.yaml as:

dfuserver:
- name: dfuserver
 maxJobs: 1

If you were to add a mydfuserver as follows

dfuserver:
- name: dfuserver
 maxJobs: 1
- name: mydfuserver
 maxJobs: 1

In this scenario you would have another item here named mydfuserver and it would show up in ECLWatch and you
can submit items to that.

If you wanted to add another dfuserver, you can add that to the list similarly. You can likewise instantiate other
components by adding them to their respective lists.

ECL Agent and ECLCC Server

Values of note for the ECL Agent and ECLCC Server.

useChildProcess -- As defined in the schema, launches each workunit compile as a child process rather than in its own
container. When you submit a job or query to compile it gets queued and processed, with this option set to true it will
spawn a child process utilizing almost no additional overhead in starting. Ideal for sending many small jobs to compile.
However, because each compile job is no longer executed as an independent pod with it's own resource specifications,
but instead runs as a child process within the ECLCC Server pod itself, the ECLCC Server pod must be defined with
adequate resources for itself (minimal for listening to the queue etc.) and all the jobs it may have to run in parallel.

For example, imagine maxJobs is set to 4, and 4 large queries are queued rapidly, that will mean 4 child processes
are launched each consuming cpu and memory within the ECLCC Server pod. With the component configured with

© 2022 HPCC Systems®. All rights reserved
21

Containerized HPCC Systems® Platform
Configuration Values

useChildProcesses set to true, each job will run in the same pod (up to the value of maxJobs in parallel). Therefore
with useChildProcesses enabled, the component resources must be defined such that the pod has enough resources to
handle the resource demands of all those jobs to be able to run in parallel.

With useChildProcess enabled it could be rather expensive in most cloud pricing models, and rather wasteful if there
aren't any jobs running. Instead you can set this useChildprocess to false (the default) to start a pod to compile each
query with only the required memory for the job which will be disposed of when done. Now this model also has
overheard, perhaps 20 seconds to a minute to spawn the Kubernetes cluster to process the job. Which may not be ideal
for an environment which is sending several small jobs, but rather larger jobs which would minimize the effect of the
overhead in starting the Kubernetes cluster.

Setting useChildProcess to false better allows for the possibility of dynamic scaling. For jobs which would take a long
while to compile, the extra (start up) overhead is minimal, and that would be the ideal case to have the useChildProcess
as false. Setting useChildProcess to false only allows 1 pod per compile, though there is an attribute for putting a time
limit on that compilation.

ChildProcessTimeLimit is the time limit (in seconds) for child process compilation before aborting and using a
separate container, when the useChildProcesses is false.

maxActive -- The maximum number of jobs that can be run in parallel. Again use caution because each job will need
enough memory to run. For instance, if maxActive is set to 2000, you could submit a very big job and in that case
spawn some 2000 jobs using a considerable amount of resources, which could potentially run up a rather expensive
compilation bill, again depending on your cloud provider and your billing plan.

Sasha

The configuration for Sasha is an outlier as it is a dictionary type structure and not a list. You can't have more than
one archiver or dfuwu-archiver as that is a value limitation, you can choose to either have the service or not (set the
'disabled' value to true).

Thor

Thor instances run dynamically, as do the other components in containers. The configuration for Thor also consists of
a list of Thor instances. Each instance dynamically spawns a collection of pods (manager + N workers) when jobs are
queued to it. When idle there are no worker (or manager) pods running.

If you wanted a 50-way Thor you set the number of workers, the numWorkers value to 50 and you would have a 50-
way Thor. As indicated in the following example:

thor:
- name: thor
 prefix: thor
 numWorkers: 50

In doing so, ideally you should rename the resource to something which clearly describes it, such as thor_50 as in
the following example.

-name: thor_50

Updating the numWorkers value will restart the Thor agent listening to the queue, causing all new jobs to use the
new configuration.

maxJobs -- Controls the number of jobs, specifically maxJobs sets the maximum number of jobs.

maxGraphs -- Limits the maximum amount of graphs. It generally makes sense to keep this value below or at the
same number as maxJobs, since not all jobs submit graphs and when they do the Thor jobs are not executing graphs all

© 2022 HPCC Systems®. All rights reserved
22

Containerized HPCC Systems® Platform
Configuration Values

the time. If there are more than 2 submitted (Thor) graphs, the second would be blocked until the next Thor instance
becomes available.

The idea here is that jobs may spend significant amount of time outside of graphs, such as waiting on a workflow state
(outside of the Thor engine itself), blocked on a persist, or updating super files, etc. Then it makes sense for Thor to have
a higher limit of concurrent jobs (maxJobs) than graphs (maxGraphs / Thor instances). Since Thor instances (graphs)
are relatively expensive (lots of pods/higher resource use), while workflow pods (jobs) are comparatively cheap.

Thus, the delivered (example) chart values defines maxJobs to be greater than maxGraphs. Jobs queued to a Thor
aren't always running graphs. Therefore it can make sense to have more of these jobs, which are not consuming a large
Thor and all its resources, but restrict the max number of Thor instances running.

Thor has 3 components (that correspond to the resource sections).

1. Workflow

2. Manager

3. Workers

The Manager and Workers are launched together and consume quite a bit of resoures (and nodes) typically. While
the Workflow is inexpensive and usually doesn't require as many resources. You might expect in a Kubernetes world,
many of them would co-exist on the same node (and therefore be inexpensive). So it makes sense for maxJobs to be
higher, and maxGraphs to be lower

In Kubernetes, jobs run independently in their own pods. While in bare metal we can have jobs that could effect other
jobs because they are running in the same process space.

© 2022 HPCC Systems®. All rights reserved
23

Containerized HPCC Systems® Platform
Configuration Values

The HPCC Systems values.yaml file
The delivered HPCC systems values.yaml file is more of an example providing a basic type configuration which should
be customized for your specific needs. One of the main ideas behind the values file is to be able to relatively easily
customize it to your specific scenario. The delivered chart is set up to be sensible enough to understand, while also
allowing for relatively easy customization to configure a system to your specific requirements. This section will take
a closer look at some aspects of the delivered values.yaml.

The delivered HPCC Systems Values file primarily consists of the following areas:

• global

• storage

• data planes

• certificates

• security

• secrets

• components

The subsequent sections will examine some of these more closely and why each of them is there.

Storage
Containerized Storage is another key concept that differs from bare metal. There are a few differences between con-
tainer and bare metal storage. The Storage section is fairly well defined between the schema file, and the values.yaml.
A good approach towards storage is to clearly understand your storage needs, and to outline them, and once you have
that basic structure in mind the schema can help to fill in the details. The schema should have a decent description
for each attribute. All storage should be defined via planes. There is a relevant comment in the values.yaml further
describing storage.

storage:
##
1. If an engine component has the dataPlane property set,
then that plane will be the default data location for that component.
2. If there is a plane definition with a category of "data"
then the first matching plane will be the default data location
##
If a data plane contains the storageClass property then an implicit pvc
will be created for that data plane.
##
If plane.pvc is defined, a Persistent Volume Claim must exist with that name,
storageClass and storageSize are not used.
##
If plane.storageClass is defined, storageClassName: <storageClass>
If set to "-", storageClassName: "", which disables dynamic provisioning
If set to "", choosing the default provisioner.
(gp2 on AWS, standard on GKE, AWS & OpenStack)
##
plane.forcePermissions=true is required by some types of provisioned
storage, where the mounted filing system has insufficient permissions to be
read by the hpcc pods. Examples include using hostpath storage (e.g. on
minikube and docker for desktop), or using NFS mounted storage.

© 2022 HPCC Systems®. All rights reserved
24

Containerized HPCC Systems® Platform
Configuration Values

There are different categories of storage, for an HPCC Systems deployment you must have at a minimum a dali
category, a dll category, and at least 1 data category. These types are generally applicable for every configuration in
addition to other optional categories of data.

All storage should be in a storage plane definition. This is best described in the comment in the storage definition
in the values file.

planes:
 # name: <required>
 # prefix: <path> # Root directory for accessing the plane
 # (if pvc defined),
 # # or url to access plane.
 # category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?
 #
 # For dynamic pvc creation:
 # storageClass: ''
 # storageSize: 1Gi
 #
 # For persistent storage:
 # pvc: <name> # The name of the persistant volume claim
 # forcePermissions: false
 # hosts: [<host-list] # Inline list of hosts
 # hostGroup: <name> # Name of the host group for bare metal
 # # must match the name of the storage plane..
 #
 # Other options:
 # subPath: <relative-path> # Optional sub directory within <prefix>
 # # to use as the root directory
 # numDevices: 1 # number of devices that are part of the plane
 # secret: <secret-id> # what secret is required to access the files.
 # # This could optionally become a list if required
 # (or add secrets:).

 # defaultSprayParts: 4 # The number of partitions created when spraying
 # (default: 1)

 # cost: # The storage cost
 # storageAtRest: 0.0135 # Storage at rest cost: cost per GiB/month

Each plane has 3 required fields: The name, the category and the prefix.

When the system is installed,using the stock supplied values it will create a storage volume which has 1 GB capacity
via the following properties.

For example:

- name: dali
 storageClass: ""
 storageSize: 1Gi
 prefix: "/var/lib/HPCCSystems/dalistorage"
 category: dali

Most commonly the prefix: defines the path within the container where the storage is mounted. The prefix can be a
URL for blob storage. All pods will use the (prefix:) path to access the storage.

For the above example, when you look at the storage list, the storageSize will create a volume with 1 GB capacity.
The prefix will be the path, the category is used to limit access to the data, and to minimize the number of volumes
accessible from each component.

The dynamic storage lists in the values.yaml file are characterized by the storageClass: and storageSize: values.

storageClass: defines which storage provisioner should be used to allocate the storage. A blank storage class indicates
it should use the default cloud providers storage class.

© 2022 HPCC Systems®. All rights reserved
25

Containerized HPCC Systems® Platform
Configuration Values

storageSize: As indicated in the example, defines the capacity of the volume.

Storage Category

Storage category is used to indicate the kind of data that is being stored in that location. Different planes are used
for the different categories to isolate the different types of data from each other, but also because they often require
different performance characteristics. A named plane may only store one category of data. The following sections look
at the currently supported categories of data used in our containerized deployment.

 category: data|dali|lz|dll|spill|temp # What category of data is stored on this plane?

The system itself can write out to any data plane. This is how the data category can help to improve performance. For
example, if you have an index, Roxie would want rapid access to data, versus other components.

Some components may use only 1 category, some can use several. The values file can contain more than one storage
plane definition for each category. The first storage plane in the list for each category is used as the default location to
store that category of data. These categories minimize the exposure of plane data to components that don't need them.
For example the ECLCC Server component does not need to know about landing zones, or where Dali stores its data,
so it only mounts the plane categories it needs.

Ephemeral Storage

Ephemeral storage is allocated when the HPCC Systems cluster is installed and deleted when the chart is uninstalled.
This is helpful in keeping cloud costs down but may not be appropriate for your data.

In your system, you would want to override the delivered stock value(s) with storage appropriate for your specific
needs. The supplied values create ephemeral or temporary persistent volumes that get automatically deleted when
the chart is uninstalled. You probably want the storage to be persistent. You should customize the storage to a more
suitable configuration for your needs.

Persistent Storage

Kubernetes uses persistent volume claims (pvcs) to provide access to data storage. HPCC Systems supports cloud
storage through the cloud provider that can be exposed through these persistent volume claims.

Persistent Volume Claims can be created by overriding the storage values in the delivered Helm chart. The values in
the examples/local/values-localfile.yaml provided override the corresponding entries in the original delivered stock
HPCC Systems helm chart. The localfile chart creates persistent storage volumes. You can use the values-localfile.yaml
directly (as demonstrated in separate docs/tutorials) or you can use it as a basis for creating your own override chart.

To define a storage plane that utilizes a PVC, you must decide on where that data will reside. You create the storage
directories, with the appropriate names and then you can install the localfiles Helm chart to create the volumes to use
the local storage option, such as in the following example:

helm install mycluster hpcc/hpcc -f examples/local/values-localfile.yaml

Note: The settings for the PVC's must be ReadWriteMany, except for Dali which can be ReadWriteOnce.

There are a number of resources, blogs, tutorials, even developer videos that provide step-by-step detail for creating
persistent storage volumes.

Bare Metal Storage

There are two aspects to using bare metal storage in the Kubernetes system. The first is the hostGroups entry in the
storage section which provides named lists of hosts. The hostGroups entries can take one of two forms. This is the
most common form, and directly associates a list of host names with a name:

storage:

© 2022 HPCC Systems®. All rights reserved
26

Containerized HPCC Systems® Platform
Configuration Values

 hostGroups:
 - name: <name> "The name of the host group"
 hosts: ["a list of host names"]

The second form allows one host group to be derived from another:

storage:
 hostGroups:
 - name: "The name of the host group process"
 hostGroup: "Name of the hostgroup to create a subset of"
 count: <Number of hosts in the subset>
 offset: <the first host to include in the subset>
 delta: <Cycle offset to apply to the hosts>

Some typical examples with bare-metal clusters are smaller subsets of the host, or the same hosts, but storing different
parts on different nodes, for example:

storage:
 hostGroups:
 - name: groupABCDE # Explicit list of hosts
 hosts: [A, B, C, D, E]
 - name groupCDE # Subset of the group last 3 hosts
 hostGroup: groupABCDE
 count: 3
 offset: 2
 - name groupDEC # Same set of hosts, but different part->host mapping
 hostGroup: groupCDE
 delta: 1

The second aspect is to add a property to the storage plane definition to indicate which hosts are associated with it.
There are two options:

• hostGroup: <name> The name of the host group for bare metal. The name of the hostGroup must match the name
of the storage plane.

• hosts: <list-of-namesname> An inline list of hosts. Primarily useful for defining one-off external landing zones.

For Example:

storage:
 planes:
 - name: demoOne
 category: data
 prefix: "/home/demo/temp"
 hostGroup: groupABCD # The name of the hostGroup
 - name: myDropZone
 category: lz
 prefix: "/home/demo/mydropzone"
 hosts: ['mylandingzone.com'] # Inline reference to an external host.

Storage Items for HPCC Systems Components

General Data Storage

General data files generated by HPCC are stored stored in data. For Thor, data storage costs could likely be significant.
Sequential access speed is important, but random access is much less so. For ROXIE, speed of random access is likely
to be most important.

LZ

LZ or lz, utilized for landing zone data. This is where we would put raw data coming into the system. A landing
zone where external users can read and write files. HPCC Systems can import from or export files to a landing zone.

© 2022 HPCC Systems®. All rights reserved
27

Containerized HPCC Systems® Platform
Configuration Values

Typically performance is less of an issue, it could be blob/s3 bucket storage, accessed either directly or via an NFS
mount.

dali

The location of the dali metadata store, which needs to support fast random access.

dll

Where the compiled ECL queries are stored. The storage needs to allow shared objects to be directly loaded from it
efficiently.

If you wanted both Dali and dll data on the same plane, it is possible to use the same prefix for both subpath properties.
Both would use the same prefix, but should have different subpaths.

sasha

This is the location where archived workunits, etc are stored and it is typically less speed critical, requiring lower
storage costs.

spill

An optional category where the spill files are written out to. Local NVMe disks are potentially a good choice for this.

temp

An optional category where temp files can be written to.

The Security Values
This section will look at the values.yaml sections dealing with the system security components.

Certificates

The certificates section can be used to enable the cert-manager to generate TLS certificates for each component in
the HPCC Systems deployment.

certificates:
 enabled: false
 issuers:
 local:
 name: hpcc-local-issuer

In the delivered yaml file certificates are not enabled, as illustrated above. You must first install the cert-manager to
use this feature.

Secrets

The Secrets section contains a set of categories, each of which contain a list of secrets. The Secrets section is where to
get info into the system if you don't want it in the source. Such as code with embedded code, you can have that defined
in the code sign sections. If you have information that you don't want public but need to run it you could use secrets.

Vaults

Vaults is another way to do Secrets. The vaults section mirrors the secret section but leverages HashiCorp Vault for
the storage of secrets. There is an additional category for vaults named "ecl-user". The intent of the ecl-user vault

© 2022 HPCC Systems®. All rights reserved
28

Containerized HPCC Systems® Platform
Configuration Values

secrets is to be readable directly from ECL code. Other secret categories are read internally by system components
and not exposed directly to ECL code.

Replicas and Resources
Other noteworthy values in the charts that have bearing on HPCC Systems set up and configuration.

Replicas

replicas: defines how many replica nodes come up, how many pods run to balance a load. To illustrate, if you have a
1-way Roxie and set replicas to 2 you would have 2, 1-way Roxies.

Resources

Most all components have a resources section which defines how many resources are assigned to that component. In
the stock delivered values files, the resources: sections are there for illustration purposes only, and are commented
out. Any cloud deployment that will be performing any non-trivial function, these values should be properly defined
with adequate resources for each component, in the same way you would allocate adequate physical resources in a
data center. Resources should be set up in accordance with your specific system requirements and the environment
you would be running them in. Improper resource definition can result in running out of memory and/or Kubernetes
eviction, since the system could use unbound amounts of resources, such as memory, and nodes will get overwhelmed,
at which point Kubernetes will started evicting pods. Therefore if your deployment is seeing frequent evictions, you
may want to adjust your resource allocation.

 #resources:
 # cpu: "1"
 # memory: "4G"

Every component should have a resources entry, but some components such as Thor have multiple resources. The
manager, worker, eclagent components all have different resource requirements.

Taints, Tolerations, and placements

This is an important consideration for containerized systems. Taints and Tolerations are types of Kubernetes node
constraints also referred to by Node Affinity. Node affinity is a way to constrain pods to nodes. Only one "affinity" can
be applied to a pod. If a pod matches multiple placement 'pods' lists, then only the last "affinity" definition will apply.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate nodes. Tolerations are
applied to pods, and allow (but do not require) the pods to schedule onto nodes with matching taints. Taints are the
opposite -- they allow a node to repel a set of pods.

For example, Thor workers should all be on the appropriate type of VM. If a big Thor job comes along – then the
taints level comes into play.

For more information and examples of our Taints, Tolerations, and Placements please review our developer documen-
tation:

https://github.com/hpcc-systems/HPCC-Platform/blob/master/helm/hpcc/docs/placements.md

Placements

The Placement is responsible for finding the best node for a pod. Most often placement is handled automatically by
Kubernetes. You can constrain a Pod so that it can only run on particular set of Nodes. Using placements you can
configure the Kubernetes scheduler to use a "pods" list to apply settings to pods. For example:

 placements:

© 2022 HPCC Systems®. All rights reserved
29

Containerized HPCC Systems® Platform
Configuration Values

 - pods: [list]
 placement:
 <supported configurations>

The pods: [list] can contain a variety of items.

1. HPCC Systems component types, using the prefix type: this can be: dali, esp, eclagent, eclccserver, roxie, thor.
For example "type:esp"

2. Target; the name of an array item from the above types using prefix "target:" For example "target:roxie" or "tar-
get:thor".

3. Pod, "Deployment" metadata name from the name of the array item of a type. For example, "eclwatch", "mydali",
"thor-thoragent"

4. Job name regular expression: For example "compile-" or "compile-." or exact match "^compile-.$"

5. All: to apply for all HPCC Systems components. The default placements for pods we deliver is [all]

Placements – in Kubernetes the Placement concept allows you to spread your pods across types of nodes with particular
characteristics. Placements would be used to ensure that pods or jobs that want nodes with specific characteristics are
placed on them.

For instance a Thor cluster could be targeted for machine learning using nodes with a GPU. Another job may want
nodes with a good amount more memory or another for more CPU. You can use placements to ensure that pods with
specific requirements are placed on appropriate nodes.

More Helm and Yaml
This section is intended to provide some helpful information to get started with a containerized deployment. There
are numerous resources for using Kubernetes, Helm, and Yaml files. Previously, we touched on the values.yaml file
and the values-schema.json file. This section expands on some of those concepts and how they might be applied when
using the containerized version of the HPCC Systems platform. For more information about using Kubernetes, Helm,
or YAML files, or for cloud or container deployments, refer to the respective documentation.

The values.yaml file structure
The values.yaml file is a yaml file. Yaml is a data serialization language often used as a format for configuration
files. The construct that makes up the bulk of a yaml file is the key-value pair, sometimes referred to as a hash or a
dictionary. The key-value pair construct consists of a key that points to some value(s). The values could be strings,
numbers, booleans, integers, arrays, or dictionaries, and lists. These values are defined by the schema.

In yaml files the indentation is used to represent document structure and nesting. Leading spaces are significant and
tabs are not allowed.

Dictionary

Dictionaries are collections of key value mappings. All keys are case-sensitive and as we mentioned earlier the inden-
tation is also crucial. These keys must be followed by a colon (:) and a space. Dictionaries can also be nested.

Dictionary is a key: value, followed by another key: value:, for example:

 logging:
 detail: 80

This is an example of a dictionary for logging.

© 2022 HPCC Systems®. All rights reserved
30

Containerized HPCC Systems® Platform
Configuration Values

Dictionaries in passed in values files, such as the ones in the myoverrides.yaml file in the example below, will be
merged into the corresponding dictionaries in the existing values, starting with the default values from the delivered
hpcc helm chart.

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

Note that you can pass in as many yaml files as you like, they will be merged in the order that they appear on the
command line.

Any pre-existing values in a dictionary that are not overridden will continue to be present in the merged result. How-
ever, you can delete the contents of a dictionary by setting it to null.

Lists

Lists are groups of elements beginning at the same indentation level starting with a - (a dash and a space). Every
element of the list is indented at the same level and starts with a dash and a space. Lists can also be nested, and they
can be lists of dictionaries, which may in turn also have list properties.

An example of a list of dictionaries, with placement.tolerations as a nested list.:

placements:
- pods: ["all"]
 placement:
 tolerations:
 - key: "kubernetes.azure.com/scalesetpriority"

A key is denoted using a minus sign, which is an entry item in the list, which itself is a dictionary with nested attributes.
Then the next minus sign (at that same indentation level) is the next entry in that list.

Global
The first section of the values.yaml file describes global values. The global.image.root is a string denoting which
version to pull. Global applies generally to everything.

Default values for hpcc.

global:
 # Settings in the global section apply to all HPCC components in all subcharts

 image:
 ## It is recommended to name a specific version rather than latest, for any non-trivial
 ## For best results, the helm chart version and platform version should match - default if version
 ## not specified. Do not override without good reason as undefined behavior may result.
 ## version: x.y.z
 root: "hpccsystems" # change this to pull from somewhere other than DockerHub hpccsystems
 pullPolicy: IfNotPresent

 # logging sets the default logging information for all components. Can be overridden locally
 logging:
 detail: 80

In the delivered HPCC Systems values.yaml file excerpt (above) global: is a top level dictionary. As noted in the
comments, the settings in the global section apply to all HPCC Systems components. Note from the indentation that
the other values are nested in that global dictionary.

Image

In our delivered values.yaml file the value immediately following global: is image: you should use a specific named
version rather than using the "latest", as also indicated in the comments in the values file. The Helm chart version

© 2022 HPCC Systems®. All rights reserved
31

Containerized HPCC Systems® Platform
Configuration Values

and platform version should match. Ideally you shouldn't have to set the image.version at all. By default it will match
the helm chart version.

The Root value

The global dictionary/definition level entry is root. For example

 root: "hpccsystems" # change to pull your images somewhere other than DockerHub hpccsystems

In values.yaml file this uses our HPCC Systems specific repository. It is possible you may want to pull from some
other repository, this then is where to set that value.

root: SomeValue

Other Chart Values

Items defined in the global section are shared between all components.

Examples of global values are the storage and security sections.

storage:
 planes:

and also

security:
 eclSecurity:
 # Possible values:
 # allow - functionality is permitted
 # deny - functionality is not permitted
 # allowSigned - functionality permitted only if code signed
 embedded: "allow"
 pipe: "allow"
 extern: "allow"
 datafile: "allow"

In the above examples, storage: and security: are global chart values.

Usage
The HPCC Systems values.yaml file is used by the Helm chart to control how HPCC Systems is deployed. The values
file contains dictionaries and lists, and they can be nested to create more complex structures. The stock HPCC Sys-
tems values.yaml is intended as a quick start demonstration installation guide which is not appropriate for non-trivial
practical usage. You should customize your deployment to one which is more suited towards your specific needs. To
customize your deployment you override the stock values in the values.yaml file, as in the following example:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

The above example uses the myoverrides.yaml file via the -f parameter, which overrides any specified values in the
HPCC Systems values.yaml file. It's important to note that this merges the overrides from myoverrides.yaml. Anything
that's in the values in the helm chart itself that is not overwritten by the passed in values will remain active. When
there are 2 yaml files such as this example (the stock values.yaml, and the myoverrides.yaml), if there is a matching
entry (anything other than a dictionary) the value from 2nd file will overwrite the first. Dictionaries however will
always be merged.

Further information about customized deployments is covered in other sections, as well as the Kubernetes Helm doc-
umentation. Consulting the Helm documentation provides complete detail for every aspect of Helm chart usage, and
not only for a few select cases described.

© 2022 HPCC Systems®. All rights reserved
32

Containerized HPCC Systems® Platform
Configuration Values

Use Case

For instance, you want to update logging detail. You could have another yaml file to update that value, or any other
list value using an override yaml file.

As we will see later, components are defined as lists, so any definition of a component in a user values file will replace
all instances of the component in the default chart. You can remove all components defined in a list, by replacing the
list with a null list, for example,

 thor: []

This will remove all Thor components.

Other options (for instance configuring the costs for cpu or file access) are implemented as a dictionary, so options
can be selectively set in a users values file, and the other options will be retained.

Merging and Overriding

Having multiple yaml files, such as one for logging, another for storage, yet another for secrets and so forth, the files
can be in version control. They can be versioned, checked in, etc. and have the benefit of only defining/changing the
specific area required, while ensuring any non-changing areas are left untouched. The rule here to keep in mind where
multiple yaml files are applied, the later ones will always overwrite the values in the earlier ones. They are merged
in in sequence.

Another point to consider, where there is a global dictionary such as root: and its value is redefined in the 2nd file (as
a dictionary) it would not be overwritten. You can't simply overwrite a dictionary. You can redefine a dictionary and
set it to null (such as the Thor example in the previous section), which will effectively wipe it out.

WARNING: If you had a global definition (such as storage.planes) and merge it where that becomes redefined it
would wipe out every definition in the list.

Another means to wipe out every value in a list is to pass in an empty set denoted by a [] such as this example:

bundles: []

This would wipe out any properties defined for bundles.

Generally applicable

These items are generally applicable for our HPCC Systems Helm yaml files.

• All names should be unique.

• All prefixes should be unique.

• Services should be unique.

• yaml files are merged in sequence.

Generally regarding the HPCC Systems components, the components are lists. As stated previously, If you have an
empty value list [], it would invalidate that list elsewhere.

Additional Usage
Components are added or modified by passing in overrides. Chart values are only overridden, either by passing in
override values file using -f, (for override file) or via --set where you can override a single value. Those passed in
values are always merged in the order they are given on the helm command line.

© 2022 HPCC Systems®. All rights reserved
33

Containerized HPCC Systems® Platform
Configuration Values

For example you can

helm install myhpcc hpcc/hpcc -f myoverrides.yaml

To override any values in the delivered values.yaml. Or you can use --set as in the following example:

helm install myhpcc hpcc/hpcc --set storage.daliStorage.plane=dali-plane

To override only the global.image.version value. Again, the order the values are merged in is the same in which they
are issued on the command line. Now consider:

helm install myhpcc hpcc/hpcc -f myoverrides.yaml --set storage.daliStorage.plane=dali-plane

In the preceding example, the --set flag in the above command overrides the value for the storage.daliStorage.plane
(if) set in the myoverrides.yaml, which overrides any values.yaml file settings and results in setting it to dali-plane. So,
irrespective of the value in the yaml file for this particular setting, the order specified on the command line overwrites
it in the order supplied on the command line.

command line options

If the --set flag is used on helm install or helm upgrade, those values are simply converted to YAML on the client side.

You can specify the -f flag multiple times. The priority will be given to the last (right-most) file specified.

$ helm install myhpcc hpcc/hpcc -f myvalues.yaml -f override.yaml

For the above example, if both myvalues.yaml and override.yaml contained a key called 'Test', the value set in over-
ride.yaml would take precedence.

© 2022 HPCC Systems®. All rights reserved
34

Containerized HPCC Systems® Platform
Containerized Logging

Containerized Logging

Logging Background
Bare-metal HPCC Systems component logs are written to persistent files on local file system, In contrast, container-
ized HPCC logs are ephemeral, and their location is not always well defined. HPCC Systems components provide
informative application level logs for the purpose of debugging problems, auditing actions, and progress monitoring.

Following the most widely accepted containerized methodologies, HPCC Systems component log information is rout-
ed to the standard output streams rather than local files. In containerized deployments there aren't any component logs
written to files as in previous editions.

These logs are written to the standard error (stderr) stream. At the node level, the contents of the standard error and out
streams are redirected to a target location by a container engine. In a Kubernetes environment, the Docker container
engine redirects the streams to a logging driver, which Kubernetes configures to write to a file in JSON format. The
logs are exposed by Kubernetes via the aptly named "logs" command.

For example:

>kubectl logs myesp-6476c6659b-vqckq
>0000CF0F PRG INF 2020-05-12 17:10:34.910 1 10690 "HTTP First Line: GET / HTTP/1.1"
>0000CF10 PRG INF 2020-05-12 17:10:34.911 1 10690 "GET /, from 10.240.0.4"
>0000CF11 PRG INF 2020-05-12 17:10:34.911 1 10690 “TxSummary[activeReqs=22; rcv=5ms;total=6ms;]"

It is important to understand that these logs are ephemeral in nature, and may be lost if the pod is evicted, the container
crashes, the node dies, etc. Also, due to the nature of containerized solutions, related logs are likely to originate from
various locations and might need to be collected and processed. It is highly recommended to develop a retention and
processing strategy based on your needs.

Many tools are available to help create an appropriate solution based on either a do-it-yourself approach, or managed
features available from cloud providers.

For the simplest of environments, it might be acceptable to rely on the standard Kubernetes process which forwards
all contents of stdout/stderr to file. However, as the complexity of the cluster grows or the importance of retaining the
logs' content grows, a cluster-level logging architecture should be employed.

Cluster-level logging for the containerized HPCC Systems cluster can be accomplished by including a logging agent
on each node. The task of each of agent is to expose the logs or push them to a log processing backend. Logging agents
are generally not provided out of the box, but there are several available such as Elasticsearch and Stackdriver Logging.
Various cloud providers offer built-in solutions which automatically harvest all stdout/err streams and provide dynamic
storage and powerful analytic tools, and the ability to create custom alerts based on log data.

It is your responsibility to determine the appropriate solution to process the streaming log data.

© 2022 HPCC Systems®. All rights reserved
35

Containerized HPCC Systems® Platform
Containerized Logging

Log Processing Solutions
There are multiple available log processing solutions. You could choose to integrate HPCC Systems logging data with
any of your existing logging solutions, or to implement another one specifically for HPCC Systems data. Starting with
HPCC Systems version 8.4, we provide a lightweight, yet complete log-processing solution for your convenience.
As stated there are several possible solutions, you should choose the option that best meets your requirements. The
following sections will look at two possible solutions.

The Elastic4hpcclogs chart
HPCC Systems provides a managed Helm chart, elastic4hpcclogs which utilizes the Elastic Stack Helm charts for
Elastic Search, Filebeats, and Kibana. This chart describes a local, minimal Elastic Stack instance for HPCC Systems
component log processing. Once successfully deployed, HPCC component logs produced within the same namespace
should be automatically indexed on the Elastic Search end-point. Users can query those logs by issuing Elastic Search
RESTful API queries, or via the Kibana UI (after creating a simple index pattern).

Out of the box, the Filebeat forwards the HPCC component log entries to a generically named index: 'file-
beat'-<VERSION>- <DATE_STAMP> and writes the log data into 'hpcc.log.*' prefixed fields. It also aggregates k8s,
Docker, and system metadata to help the user query the log entries of their interest.

A Kibana index pattern is created automatically based on the default filebeat index layout.

© 2022 HPCC Systems®. All rights reserved
36

Containerized HPCC Systems® Platform
Containerized Logging

Installing the elastic4hpcclogs chart
Installing the provided simple solution is as the name implies, simple and a convenient way to gather and filter log
data. It is installed via our helm charts from the HPCC Systems repository. In the HPCC-platform/helm directory, the
elastic4hpcclogs chart is delivered along with the other HPCC System platform components. The next sections will
show you how to install and set up the Elastic stack logging solution for HPCC Systems.

Add the HPCC Systems Repository
The delivered Elastic for HPCC Systems chart can be found in the HPCC Systems Helm repository. To fetch and
deploy the HPCC Systems managed charts, add the HPCC Systems Helm repository if you haven't done so already:

helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Once this command has completed successfully, the elastic4hpcclogs chart will be accessible.

Confirm the appropriate chart was pulled down.

helm list

Issuing the helm list command will display the available HPCC Systems charts and repositories. The elastic4hpcclogs
chart is among them.

Install the elastic4hpcc chart
Install the elastic4hpcclogs chart using the following command:

helm install <Instance_Name> hpcc/elastic4hpcclogs

Provide the name you wish to call your Elastic Search instance for the <Instance_Name> parameter. For example, you
could call your instance "myelk" in which case you would issue the install command as follows:

helm install myelk hpcc/elastic4hpcclogs

Upon successful completion, the following message is displayed:

Thank you for installing elastic4hpcclogs.
 A lightweight Elastic Search instance for HPCC component log processing.

This deployment varies slightly from defaults set by Elastic, please review the effective values.

PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit manual removal
 when no longer needed.

© 2022 HPCC Systems®. All rights reserved
37

Containerized HPCC Systems® Platform
Containerized Logging

IMPORTANT: PLEASE NOTE: Elastic Search declares PVC(s) which might require explicit manual
removal when no longer needed. This can be particularly important for some cloud providers which could
accrue costs even after no longer using your instance. You should ensure no components (such as PVCs)
persist and continue to accrue costs.

NOTE: Depending on the version of Kubernetes, users might be warned about deprecated APIs in the Elastic charts
(ClusterRole and ClusterRoleBinding are deprecated in v1.17+). Deployments based on Kubernetes < v1.22 should
not be impacted.

Confirm Your Pods are Ready
Confirm the Elastic pods are ready. Sometimes after installing, pods can take a few seconds to come up. Confirming
the pods are in a ready state is a good idea before proceeding. To do this, use the following command:

kubectl get pods

This command returns the following information, displaying the status of the of the pods.

elasticsearch-master-0 1/1 Running 0
myelk-filebeat-6wd2g 1/1 Running 0
myelk-kibana-68688b4d4d-d489b 1/1 Running 0

Once all the pods are indicating a 'ready' state and 'Running', including the three components for filebeats, Elastic
Search, and Kibana (highlighted above) you can proceed.

Confirming the Elastic Services
To confirm the Elastic services are running, issue the following command:

$ kubectl get svc

This displays the following confirmation information:

...
elasticsearch-master ClusterIP 10.109.50.54 <none> 9200/TCP,9300/TCP 68m
elasticsearch-master-headless ClusterIP None <none> 9200/TCP,9300/TCP 68m
myelk-kibana LoadBalancer 10.110.129.199 localhost 5601:31465/TCP 68m

© 2022 HPCC Systems®. All rights reserved
38

Containerized HPCC Systems® Platform
Containerized Logging

...

Note: The myelk-kibana service is declared as LoadBalancer for convenience.

Configuring of Elastic Stack Components
You may need or want to customise the Elastic stack components. The Elastic component charts values can be over-
ridden as part of the HPCC System deployment command.

For example:

helm install myelk hpcc/elastic4hpcclogs --set elasticsearch.replicas=2

Please see the Elastic Stack GitHub repository for the complete list of all Filebeat, Elastic Search, LogStash and Kibana
options with descriptions.

Use of HPCC Systems Component Logs in Kibana
Once enabled and running, you can explore and query HPCC Systems component logs from the Kibana user interface.
Using the Kibana interface is well supported and documented. Kibana index patterns are required to explore Elastic
Search data from the Kibana user interface. Elastic provides detailed explanations of the information required to un-
derstand and effectively utilize the Elastic-Kibana interface. Kibana's robust documentation, should be referred to for
more information about using the Kibana interface. Please see:

https://www.elastic.co/

and

https://www.elastic.co/elastic-stack/

Included among the complete documentation are also quick start videos and other helpful resources.

© 2022 HPCC Systems®. All rights reserved
39

Containerized HPCC Systems® Platform
Containerized Logging

Azure AKS Insights
Azure AKS Insights is an optional feature designed to help monitor performance and health of Kubernetes based
clusters. Once enabled and associated a given AKS with an active HPCC System cluster, the HPCC component logs
are automatically captured by Insights. All STDERR/STDOUT data is captured and made available for monitoring
and/or querying purposes. As is usually the case with cloud provider features, cost is a significant consideration and
should be well understood before implementation. Log content is written to the logs store associated with your Log
Analytics workspace.

Enabling Azure Insights
Enabling Azure's Insights on the target AKS cluster can be done from the Azure portal or via CLI. For detailed Azure
documentation: Enable Container insights:

https://docs.microsoft.com/en-us/azure/azure-monitor/containers/container-insights-onboard

Azure Portal

To enable the Azure insights on the Azure portal:

1. Select Target AKS cluster

2. Select Monitoring

3. Select Insights

4. Enable - choose default workspace

Command Line

To enable the Azure insights from the command line:

Optionally, create log-analytics workspace [default workspace otherwise]

Enter:

az monitor log-analytics workspace create -g myresourcegroup -n myworkspace --query-access Enabled

Enable on target AKS cluster (reference the workspace resource id from the previous step)

az aks enable-addons -g myresourcegroup -n myaks -a monitoring --workspace-resource-id \
 "/subscriptions/xyz/resourcegroups/myresourcegroup/providers/ \
 microsoft.operationalinsights/workspaces/myworkspace"

The AKS Insights interface on Azure provides Kubernetes-centric cluster/node/container-level health metrics visual-
izations, and direct links to container logs via "log analytics" interfaces. The logs can be queried via “Kusto” query
language (KQL).

See the Azure documentation for specifics on how to query the logs.

Example KQL query for fetching "Transaction summary" log entries from an ECLWatch container:

let ContainerIdList = KubePodInventory
| where ContainerName =~ 'xyz/myesp'
| where ClusterId =~ '/subscriptions/xyz/resourceGroups/xyz/providers/Microsoft.
 ContainerService/managedClusters/aks-clusterxyz'

© 2022 HPCC Systems®. All rights reserved
40

Containerized HPCC Systems® Platform
Containerized Logging

| distinct ContainerID;
ContainerLog
| where LogEntry contains "TxSummary["
| where ContainerID in (ContainerIdList)
| project LogEntrySource, LogEntry, TimeGenerated, Computer, Image, Name, ContainerID
| order by TimeGenerated desc
| render table

Sample output

More complex queries can be formulated to fetch specific information provided in any of the log columns including
unformatted data in the log message. The Insights interface facilitates creation of alerts based on those queries, which
can be used to trigger emails, SMS, Logic App execution, and many other actions.

© 2022 HPCC Systems®. All rights reserved
41

Containerized HPCC Systems® Platform
Containerized Logging

Controlling HPCC Systems Logging
Output
The HPCC Systems logs provide a wealth of information which can be used for benchmarking, auditing, debugging,
monitoring, etc. The type of information provided in the logs and its format is trivially controlled via standard Helm
configuration. Keep in mind in container mode, every line of logging output is liable to incur a cost depending on the
provider and plan you have and the verbosity should be carefully controlled using the following options.

By default, the component logs are not filtered, and contain the following columns:

MessageID TargetAudience LogEntryClass JobID DateStamp TimeStamp ProcessId ThreadID QuotedLogMessage

The logs can be filtered by TargetAudience, Category, or Detail Level. Further, the output columns can be configured.
Logging configuration settings can be applied at the global, or component level.

Target Audience Filtering
The availble target audiences include operator(OPR), user(USR), programmer(PRO), audit(ADT), or all. The filter is
controlled by the <section>.logging.audiences value. The string value is comprised of 3 letter codes delimited by the
aggregation operator (+) or the removal operator (-).

For example, all component log output to include Programmer and User messages only:

helm install myhpcc ./hpcc --set global.logging.audiences="PRO+USR"

Target Category Filtering
The available target categories include disaster(DIS), error(ERR), information(INF), warning(WRN), progress(PRO),
metrics(MET). The category (or class) filter is controlled by the <section>.logging.classes value, comprised of 3 letter
codes delimited by the aggregation operator (+) or the removal operator (-).

For example, the mydali instance's log output to include all classes except for progress:

helm install myhpcc ./hpcc --set dali[0].logging.classes="ALL-PRO" --set dali[0].name="mydali"

Log Detail Level Configuration
Log output verbosity can be adjusted from "critical messages only" (1) up to "report all messages" (100). The default
log level is rather high (80) and should be adjusted accordingly.

For example, verbosity should be medium for all components:

helm install myhpcc ./hpcc --set global.logging.detail="50"

Log Data Column Configuration
The available log data columns include messageid(MID), audience(AUD), class(CLS), date(DAT), time(TIM),
node(NOD), millitime(MLT), microtime(MCT), nanotime(NNT), processid(PID), threadid(TID), job(JOB),
use(USE), session(SES), code(COD), component(COM), quotedmessage(QUO), prefix(PFX), all(ALL), and stan-
dard(STD). The log data columns (or fields) configuration is controlled by the <section>.logging.fields value, com-
prised of 3 letter codes delimited by the aggregation operator (+) or the removal operator (-).

For example, all component log output should include the standard columns except the job ID column:

© 2022 HPCC Systems®. All rights reserved
42

Containerized HPCC Systems® Platform
Containerized Logging

helm install myhpcc ./hpcc --set global.logging.fields="STD-JOB"

Adjustment of per-component logging values can require assertion of multiple component specific values, which can
be inconvinient to do via the --set command line parameter. In these cases, a custom values file could be used to set
all required fields.

For example, the ESP component instance 'eclwatch' should output minimal log:

helm install myhpcc ./hpcc --set -f ./examples/logging/esp-eclwatch-low-logging-values.yaml

© 2022 HPCC Systems®. All rights reserved
43

	Containerized HPCC Systems® Platform
	Table of Contents
	Containerized HPCC Overview
	Bare-metal vs Containers
	Processes and pods, not machines
	Helm charts
	Static vs On-Demand Services
	Topology settings – Clusters vs queues

	Local Deployment (Development and Testing)
	Prerequisites
	Add a repository
	Start a default system
	Use the default system
	Terminate (Decommission) the system

	Storage
	Persistent Storage for a Local Deployment
	Import: Storage Planes and how to use them

	Customizing Configurations
	Customization Techniques
	Create a Custom Configuration Chart for Two Roxies
	Create a Custom Configuration Chart for Two Thors

	Configuration Values
	The Container Environment
	The values.yaml and how it is used
	The values-schema.json

	HPCC Systems Components in the values.yaml File
	The HPCC Systems Components
	Dali
	Components: dafilesvrs, dfuserver
	ECL Agent and ECLCC Server
	Sasha
	Thor

	The HPCC Systems values.yaml file
	Storage
	Storage Category
	Ephemeral Storage
	Persistent Storage
	Bare Metal Storage

	Storage Items for HPCC Systems Components
	General Data Storage
	LZ
	dali
	dll
	sasha
	spill
	temp

	The Security Values
	Certificates
	Secrets
	Vaults

	Replicas and Resources
	Replicas
	Resources
	Taints, Tolerations, and placements
	Placements

	More Helm and Yaml
	The values.yaml file structure
	Dictionary
	Lists

	Global
	Image
	The Root value
	Other Chart Values

	Usage
	Use Case
	Merging and Overriding
	Generally applicable

	Additional Usage
	command line options

	Containerized Logging
	Logging Background
	Log Processing Solutions
	The Elastic4hpcclogs chart

	Installing the elastic4hpcclogs chart
	Add the HPCC Systems Repository
	Install the elastic4hpcc chart
	Confirm Your Pods are Ready
	Confirming the Elastic Services
	Configuring of Elastic Stack Components
	Use of HPCC Systems Component Logs in Kibana

	Azure AKS Insights
	Enabling Azure Insights
	Azure Portal
	Command Line

	Controlling HPCC Systems Logging Output
	Target Audience Filtering
	Target Category Filtering
	Log Detail Level Configuration
	Log Data Column Configuration

