
Containerized HPCC Systems®
Platform
Boca Raton Documentation Team

Containerized HPCC Systems® Platform

Containerized HPCC Systems® Platform
Boca Raton Documentation Team
Copyright © 2021 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2021 Version 8.0.74-1

© 2021 HPCC Systems®. All rights reserved
2

Containerized HPCC Systems® Platform

Containerized HPCC Overview ... 4
Bare-metal vs Containers .. 5

Local Deployment (Development and Testing) ... 7
Prerequisites ... 7
Add a repository ... 7
Start a default system .. 8
Use the default system ... 10
Terminate (Decommission) the system .. 11

Storage .. 12
Persistent Storage for a Local Deployment ... 12
Import: Storage Planes and how to use them .. 14

© 2021 HPCC Systems®. All rights reserved
3

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Containerized HPCC Overview
Starting with version 8.0, the HPCC Systems® Platform is focusing on containerized deployments. This is useful for
cloud-based deployments (large or small) or local testing/development deployments.

Docker containers managed by Kubernetes (K8s) is a new target operating environment, alongside continued support
for traditional “bare metal” installations using .deb or .rpm installer files. Support for traditional installers continues
and that type of deployment is viable for bare metal deployments or manual setups in the Cloud.

This is not a lift and shift type change, where the platform runs its legacy structure unchanged and treat the containers as
just a way of providing virtual machines on which to run, but a significant change in how components are configured,
how and when they start up, and where they store their data.

This book focuses on containerized deployments. The first section is about using Docker containers and Helm charts
locally. Docker and Helm do a lot of the work for you. The second part uses the same techniques in the cloud.

For local small deployments (for development and testing), we suggest using Docker Desktop and Helm. For Cloud
deployments, you can use any flavor of Cloud services, if it supports Docker, Kubernetes, and Helm. This book,
however, will focus on Microsoft Azure for Cloud Services. Future versions may include specifics for other Cloud
providers.

If you want to manually manage your local or Cloud deployment, you can still use the traditional installers and Con-
figuration Manager, but that removes many of the benefits that Docker, Kubernetes, and Helm provide, such as, in-
strumentation, monitoring, scaling, and cost control.

HPCC Systems adheres to standard conventions regarding how Kubernetes deployments are normally configured and
managed, so it should be easy for someone familiar with Kubernetes and Helm to install and manage the HPCC
Systems platform.

Note: The traditional bare-metal version of the HPCC Systems platform is mature and has been heavily used in
commercial applications for almost two decades and is fully intended for production use. The containerized
version is new and is not yet 100% ready for production. In addition, aspects of that version could change
without notice. We encourage you to use it and provide feedback so we can make this version as robust as
a bare-metal installation.

© 2021 HPCC Systems®. All rights reserved
4

Containerized HPCC Systems® Platform
Containerized HPCC Overview

Bare-metal vs Containers
If you are familiar with the HPCC Systems platform, there are a few fundamental changes to note.

Processes and pods, not machines
Anyone familiar with the existing configuration system will know that part of the configuration involves creating
instances of each process and specifying on which physical machines they should run.

In a Kubernetes world, this is managed dynamically by the K8s system itself (and can be changed dynamically as
the system runs).

Additionally, a containerized system is much simpler to manage if you stick to a one process per container paradigm,
where the decisions about which containers need grouping into a pod and which pods can run on which physical nodes,
can be made automatically.

Helm charts
In the containerized world, the information that the operator needs to supply to configure an HPCC Systems environ-
ment is greatly reduced. There is no need to specify any information about what machines are in use by what process,
as mentioned above, and there is also no need to change a lot of options that might be dependent on the operating
environment, since much of that was standardized at the time the container images were built.

Therefore, in most cases, most settings should be left to use the default. As such, the new configuration paradigm
requires only the bare minimum of information be specified and any parameters not specified use the appropriate
defaults.

The default environment.xml that we include in our bare-metal packages to describe the default single-node system
contains approximately 1300 lines and it is complex enough that we recommend using a special tool for editing it.

The values.yaml from the default helm chart is under 100 lines and can be edited in any editor, and/or modified via
helm’s command-line overrides. It also is self-documented with extensive comments.

Static vs On-Demand Services
In order to realize the potential cost savings of a cloud environment while at the same time taking advantage of the
ability to scale up when needed, some services which are always-on in traditional bare-metal installations are launched
on-demand in containerized installations.

For example, an eclccserver component launches a stub requiring minimal resources, where the sole task is to watch
for workunits submitted for compilation and launch an independent K8s job to perform the actual compile.

Similarly, the eclagent component is also a stub that launches a K8s job when a workunit is submitted and the Thor stub
starts up a Thor cluster only when required. Using this design, not only does the capacity of the system automatically
scale up to use as many pods as needed to handle the submitted load, it scales down to use minimal resources (as little
as a fraction of a single node) during idle times when waiting for jobs to be submitted.

ESP and Dali components are always-on as long as the K8s cluster is started--it isn’t feasible to start and stop them on
demand without excessive latency. However, ESP can be scaled up and down dynamically to run as many instances
needed to handle the current load.

Topology settings – Clusters vs queues
In bare-metal deployments, there is a section called Topology where the various queues that workunits can be submitted
to are set up. It is the responsibility of the person editing the environment to ensure that each named target has the

© 2021 HPCC Systems®. All rights reserved
5

Containerized HPCC Systems® Platform
Containerized HPCC Overview

appropriate eclccserver, hThor (or ROXIE) and Thor (if desired) instances set up, to handle workunits submitted to
that target queue.

This setup has been greatly simplified when using Helm charts to set up a containerized system. Each named Thor or
eclagent component creates a corresponding queue (with the same name) and each eclccserver listens on all queues by
default (but you can restrict to certain queues only if you really want to). Defining a Thor component automatically
ensures that the required agent components are provisioned.

© 2021 HPCC Systems®. All rights reserved
6

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Local Deployment (Development and
Testing)

While there are many ways to install a local single node HPCC Systems Platform, this section focuses on using Docker
Desktop.

Prerequisites
• Install Docker Desktop and WSL 2

• Enable WSL integration in Docker

• Enable Kubernetes in Docker Desktop

• Install Helm

OR

• Install Docker Desktop and Hyper-V

• Enable Kubernetes in Docker Desktop

• Install Helm

OR

• Install Docker Desktop on macOS

• Enable Kubernetes in Docker Desktop

• Install Helm

Add a repository
To use the HPCC Systems helm chart, you must add it to the helm repository list, as shown below:

>helm repo add hpcc https://hpcc-systems.github.io/helm-chart/

Expected response:

"hpcc" has been added to your repositories

© 2021 HPCC Systems®. All rights reserved
7

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Start a default system
The default helm chart starts a simple test system with Dali, ESP, eclccserver, two eclagent queues (ROXIE and hThor
mode), and one Thor queue.

To start this simple system:

>helm install mycluster hpcc/hpcc --set global.image.version=latest

Expected response:

NAME: mycluster
LAST DEPLOYED: Tue Mar 23 13:26:55 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Thank you for installing the HPCC chart.

This chart has defined the following HPCC components:
dali.mydali
dfuserver.dfuserver
eclagent.hthor
eclagent.roxie-workunit
eclccserver.myeclccserver
esp.eclwatch
esp.eclservices
esp.eclqueries
esp.esdl-sandbox
esp.sql2ecl
roxie.roxie
thor.thor
sasha.dfurecovery-archiver
sasha.dfuwu-archiver
sasha.file-expiry
sasha.wu-archiver

To check status:

>kubectl get pods

Expected response:

NAME READY STATUS RESTARTS AGE
eclqueries-7fd94d77cb-m7lmb 1/1 Running 0 2m6s
eclservices-b57f9b7cc-bhwtm 1/1 Running 0 2m6s
eclwatch-599fb7845-2hq54 1/1 Running 0 2m6s
esdl-sandbox-848b865d46-9bv9r 1/1 Running 0 2m6s
hthor-745f598795-ql9dl 1/1 Running 0 2m6s
mydali-6b844bfcfb-jv7f6 2/2 Running 0 2m6s
myeclccserver-75bcc4d4d-gflfs 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-tl7bb 1/1 Running 0 2m6s
roxie-agent-1-77f696466f-xzrtf 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-m22wl 1/1 Running 0 2m6s
roxie-agent-2-6dd45b7f9d-xmlmk 1/1 Running 0 2m6s
roxie-toposerver-695fb9c5c7-9lnp5 1/1 Running 0 2m6s
roxie-workunit-d7446699f-rvf2z 1/1 Running 0 2m6s
sasha-dfurecovery-archiver-78c47c4db7-k9mdz 1/1 Running 0 2m6s
sasha-dfuwu-archiver-576b978cc7-b47v7 1/1 Running 0 2m6s
sasha-file-expiry-8496d87879-xct7f 1/1 Running 0 2m6s
sasha-wu-archiver-5f64594948-xjblh 1/1 Running 0 2m6s

© 2021 HPCC Systems®. All rights reserved
8

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

sql2ecl-5c8c94d55-tj4td 1/1 Running 0 2m6s
thor-eclagent-6b8f564f9c-qnczz 1/1 Running 0 2m6s
thor-thoragent-56d788869f-7trxk 1/1 Running 0 2m6s

Note: It may take a while before all components are running, especially the first time as the container images need
to be downloaded from Docker Hub.

© 2021 HPCC Systems®. All rights reserved
9

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Use the default system
Your system is now ready to use. The usual first step is to open ECL Watch.

Note: Some pages in ECL Watch, such as those displaying topology information, are not yet fully functional in
containerized mode.

Use this command to get a list running services and IP addresses:

>kubectl get svc

Expected response:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
eclqueries LoadBalancer 10.108.171.35 localhost 8002:31615/TCP 2m6s
eclservices ClusterIP 10.107.121.158 <none> 8010/TCP 2m6s
eclwatch LoadBalancer 10.100.81.69 localhost 8010:30173/TCP 2m6s
esdl-sandbox LoadBalancer 10.100.194.33 localhost 8899:30705/TCP 2m6s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2m6s
mydali ClusterIP 10.102.80.158 <none> 7070/TCP 2m6s
roxie LoadBalancer 10.100.134.125 localhost 9876:30480/TCP 2m6s
roxie-toposerver ClusterIP None <none> 9004/TCP 2m6s
sasha-dfuwu-archiver ClusterIP 10.110.200.110 <none> 8877/TCP 2m6s
sasha-wu-archiver ClusterIP 10.111.34.240 <none> 8877/TCP 2m6s
sql2ecl LoadBalancer 10.107.177.180 localhost 8510:30054/TCP 2m6s

Notice the eclwatch service is running on localhost:8010. Use that address in your browser to access ECL Watch.

Inside ECL Watch, press the ECL button and go to the Playground tab.

From here you can use the example ECL or enter other test queries and pick from the available clusters available to
submit your workunits.

© 2021 HPCC Systems®. All rights reserved
10

Containerized HPCC Systems® Platform
Local Deployment (Development and Testing)

Terminate (Decommission) the system
To check which Helm charts are currently installed, run this command:

>helm list

To stop the HPCC Systems pods, use helm to uninstall:

>helm uninstall mycluster

This stops the cluster, deletes the pods, and with the default settings and persistent volumes, it also deletes the storage
used.

© 2021 HPCC Systems®. All rights reserved
11

Containerized HPCC Systems® Platform
Storage

Storage

Persistent Storage for a Local Deploy-
ment
When running on a single-node test system such as Docker Desktop, the default storage class normally means that all
persistent volume claims (PVCs) map to temporary local directories on the host machine. These are typically removed
when the cluster is stopped. This is fine for testing but for any real application, you want persistent storage.

To persist data with Docker Desktop, the first step is to make sure the relevant directories exist:

1. Create data directories using a terminal interface:

For Windows, use this command:

mkdir c:\hpccdata
mkdir c:\hpccdata\dalistorage
mkdir c:\hpccdata\queries
mkdir c:\hpccdata\sasha
mkdir c:\hpccdata\hpcc-data

For macOS, use this command:

mkdir -p /Users/myUser/hpccdata/{dalistorage,queries,sasha,hpcc-data}

2. Download the HPCC Platform Helm charts.

These are available in the HPCC Systems HPCC-Platform repository on GitHub (https://github.com/hpcc-sys-
tems/HPCC-Platform).

If you want only the helm charts, the use the helm-chart repository (https://github.com/hpcc-systems/helm-chart).

3. Open a terminal and navigate to the helm folder of the repository you just downloaded.

4. Install the Helm chart from the examples/local directory in your local repository.

This chart creates persistent volumes based on host directories you created earlier.

for a WSL2 deployment:
helm install localfile examples/local/hpcc-localfile
 --set common.hostpath=/run/desktop/mnt/host/c/hpccdata

for a Hyper-V deployment:
helm install localfile examples/local/hpcc-localfile --set common.hostpath=/c/hpccdata

for a macOS deployment:
helm install localfile examples/local/hpcc-localfile --set common.hostpath=/Users/myUser/hpccdata

The --set common.hostpath= option specifies the base directory:

The path /run/desktop/mnt/host/c/hpccdata provides access to the host file system for WSL2.

The path /c/hpccdata provides access to the host file system for Hyper-V.

The path /Users/myUser/hpccdata provides access to the host file system for Mac OSX.
© 2021 HPCC Systems®. All rights reserved

12

Containerized HPCC Systems® Platform
Storage

Note: The value passed to --set common-hostpath is case sensitive.

5. If you are using Docker Desktop with Hyper-V, add the shared data folder (in this example, C:\hpccdata) in the
Docker Desktop settings.

This is not needed in a macOS or WSL 2 environment.

6. Finally, install the hpcc Helm chart, and provide a yaml file that provides storage information that uses the PVCs
created by the previous step.

The example directory contains a sample yaml file that can be used in this case:

helm install mycluster hpcc/ --set global.image.version=latest
 -f examples/local/values-localfile.yaml

7. To test, create some data files and workunits by submitting to Thor some ECL code like the following:

LayoutPerson := RECORD
 UNSIGNED1 ID;
 STRING15 FirstName;
 STRING25 LastName;
END;
allPeople := DATASET([{1,'Fred','Smith'},
 {2,'Joe','Jones'},
 {3,'Jane','Smith'}],LayoutPerson);
OUTPUT(allPeople,,'MyData::allPeople',THOR,OVERWRITE);

8. Use the helm uninstall command to terminate your clusters, then restart.

9. Open ECL Watch and notice your workunits and logical files are still there.

© 2021 HPCC Systems®. All rights reserved
13

Containerized HPCC Systems® Platform
Storage

Import: Storage Planes and how to use
them
Storage planes provide the flexibility to configure where the data is stored within an HPCC Systems platform, but it
doesn't directly address the question of how to get data onto the platform in the first place.

Containerized platforms support importing data in two ways:

• Upload to a Landing Zone and Spray (not yet implemented in the containerized version)

• Copy to a Storage Plane and access directly

Beginning with version 7.12.0, new ECL syntax was added to access files directly from a storage plane. This is similar
to the file:: syntax used to directly read files from a physical machine, typically a landing zone.

The new syntax is:

~plane::<storage-plane-name>::<path>::<filename>

Where the syntax of the path and filename are the same as used with the file:: syntax. This includes requiring uppercase
letters to be quoted with a ^ symbol. For more details, see the Landing Zone Files section of the ECL Language
Reference.

If you have storage plane configured as in the previous section, and you copy the originalperson file to C:\hpccda-
ta\hpcc-data\tutorial, you can then reference the file using this syntax:

'~plane::data::tutorial::originalperson'

Note: The originalperson file is available from the HPCC Systems Web site (https://cdn.hpccsystems.com/install/doc-
s/3_8_0_8rc_CE/OriginalPerson)

© 2021 HPCC Systems®. All rights reserved
14

	Containerized HPCC Systems® Platform
	Table of Contents
	Containerized HPCC Overview
	Bare-metal vs Containers
	Processes and pods, not machines
	Helm charts
	Static vs On-Demand Services
	Topology settings – Clusters vs queues

	Local Deployment (Development and Testing)
	Prerequisites
	Add a repository
	Start a default system
	Use the default system
	Terminate (Decommission) the system

	Storage
	Persistent Storage for a Local Deployment
	Import: Storage Planes and how to use them

