
HPCC / Spark Integration
Boca Raton Documentation Team



HPCC / Spark Integration

HPCC / Spark Integration
Boca Raton Documentation Team
Copyright © 2021 HPCC Systems®. All rights reserved

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com>

Please include Documentation Feedback in the subject line and reference the document name, page numbers, and current Version Number in
the text of the message.

LexisNexis and the Knowledge Burst logo are registered trademarks of Reed Elsevier Properties Inc., used under license.

HPCC Systems® is a registered trademark of LexisNexis Risk Data Management Inc.

Other products, logos, and services may be trademarks or registered trademarks of their respective companies.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

2021 Version 8.0.54-1

© 2021 HPCC Systems®. All rights reserved
2



HPCC / Spark Integration

HPCC / Spark Installation and Configuration ...........................................................................................  4
Spark Installation ........................................................................................................................  4
Spark Configuration ..................................................................................................................... 5

The Spark HPCC Systems Connector .....................................................................................................  8
Overview ...................................................................................................................................  8
Primary Classes ......................................................................................................................... 11
Additional Classes of interest ......................................................................................................  13
Examples .................................................................................................................................  14

© 2021 HPCC Systems®. All rights reserved
3



HPCC / Spark Integration
HPCC / Spark Installation and Configuration

HPCC / Spark Installation and
Configuration

The HPCC Systems Spark plug-in, hpccsystems-plugin-spark, integrates Spark into your HPCC System platform.
Once installed and configured, the Sparkthor component manages the Integrated Spark cluster. It dynamically config-
ures, starts, and stops your Integrated Spark cluster when you start or stop your HPCC Systems platform.

Spark Installation
To add Spark integration to your HPCC Systems cluster, you must have an HPCC Cluster running version 7.0.0 or later.
Java 8 is also required. You will need to configure the Sparkthor component. The Sparkthor component needs to be
associated with a valid existing Thor cluster. The Spark worker nodes will be created alongside each Thor worker. The
Integrated Spark Manager node will be designated during configuration, along with any other Spark node resources.
Then the Sparkthor component will spawn an Integrated Spark cluster at start up. You will also have a SPARK-HPCC
jar connector available.

To get the Integrated Spark component, packages and plug-ins are available from the HPCC Systems® web portal:
https://hpccsystems.com/download/

Download the hpccsystems-plugin-spark package from the HPCC Systems Portal.

Installing the Spark Plug-in
The installation process and package that you download vary depending on the operating system you plan to use. The
installation packages may fail to install if their dependencies are missing from the target system. To install the package,
follow the appropriate installation instructions for your operating system:

CentOS/Red Hat

For RPM based systems, you can install using yum.

sudo yum install <hpccsystems-plugin-spark>  

Ubuntu/Debian

To install a Ubuntu/Debian package, use:

sudo dpkg -i <hpccsystems-plugin-spark>  

After installing the package, you should run the following to update any dependencies.

sudo apt-get install -f 

• You need to copy and install the plug-in onto all nodes. This can be done using the install-cluster.sh script which
is provided with HPCC. Use the following command:

sudo /opt/HPCCSystems/sbin/install-cluster.sh <hpccsystems-plugin-spark>

More details including other options that may be used with this command are included in the appendix of Installing
and Running the HPCC Platform, also available on the HPCC Systems® web portal.

© 2021 HPCC Systems®. All rights reserved
4



HPCC / Spark Integration
HPCC / Spark Installation and Configuration

Spark Configuration
To configure your existing HPCC System to integrate Spark, install the hpccsystems-plugin-spark package and modify
your existing environment (file) to add the Sparkthor component.

1. If it is running, stop the HPCC system, using this command:

sudo systemctl stop hpccsystems-platform.target

You can use this command to confirm HPCC processes are stopped:

sudo systemctl status hpccsystems-platform.target

2. Start the Configuration Manager service.

sudo /opt/HPCCSystems/sbin/configmgr

3. Leave this window open. You can minimize it, if desired.

4. Using a Web browser, go to the Configuration Manager's interface:

http://<node ip >:8015

5. Check the box by the Advanced View and select the environment file to edit.

6. Enable write access (checkbox top-right of the page)

7. Right-click on the Navigator panel on the left side

Choose New Components then choose Sparkthor

© 2021 HPCC Systems®. All rights reserved
5



HPCC / Spark Integration
HPCC / Spark Installation and Configuration

8. Configure the attributes of your Spark Instance:

attribute description default required

name Name for this process mysparkthor required

ThorClusterName Thor cluster for workers to attach to* mythor* required

SPARK_EXECUTOR_CORES Number of cores for executors 1 optional

SPARK_EXECUTOR_MEMORY Memory per executor 1G optional

SPARK_MASTER_WEBUI_PORT Base port to use for manager web inter-
face

8080 optional

SPARK_MASTER_PORT Base port to use for manager 7077 optional

SPARK_WORKER_CORES Number of cores for workers 1 optional

SPARK_WORKER_MEMORY Memory per worker 1G optional

SPARK_WORKER_PORT Base port to use for workers 7071 optional

*ThorClusterName targets an existing Thor cluster. When configuring you must choose a valid existing Thor cluster
for the Integrated Spark cluster to mirror.

NOTE: You should leave a least 2 cores open for HPCC to use to provide Spark with Data. The
number of cores and memory you allocate to Spark would depend on the workload. Do not try and
allocate too many resources to Spark where you could run into an issue of HPCC and Spark conflicting
for resources.

9. Specify a Spark Manager Node; Select the Instances tab. Right-click on the Instances table and choose Add In-
stances

Add the instance of your Spark manager node.

NOTE: You can only have one Spark Manager Instance

10.Save the environment file. Exit configmgr (Ctrl+C). Copy the environment file from the source directory to the /
etc/HPCCSystems directory.

Be sure system is stopped before attempting to move the environment.xml file.

sudo cp /etc/HPCCSystems/source/<new environment file.xml> /etc/HPCCSystems/environment.xml

and distribute the new environment file to all the nodes in your cluster.

You could choose to use the delivered hpcc-push.sh script to deploy the new environment file. For example:

sudo /opt/HPCCSystems/sbin/hpcc-push.sh -s <sourcefile> -t <destinationfile> 

Now you can start your HPCC System cluster and verify that Sparkthor is alive.

© 2021 HPCC Systems®. All rights reserved
6



HPCC / Spark Integration
HPCC / Spark Installation and Configuration

To start your HPCC System.

sudo systemctl start hpccsystems-platform.target

Using a browser, navigate to your Integrated Spark's Manager instance (the instance you added above) running on
port 8080 of your HPCC System.

For example, http://nnn.nnn.nnn.nnn:8080, where nnn.nnn.nnn.nnn is your Integrated Spark Manager node's IP ad-
dress.

https://192.168.56.101:8080

Integrated Spark Cluster Configuration Options
In addition to the configuration options available through the HPCC Systems configuration manager, there are con-
figuration options meant for edge cases and more advanced setups. To customize your Integrated Spark cluster envi-
ronment to utilize these additional options use the provided spark-env.sh script.

/etc/HPCCSystems/externals/spark-hadoop/spark-env.sh

For more information about Spark Cluster options, see the following pages.

• https://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts

• https://spark.apache.org/docs/latest/configuration.html#environment-variables

Example Uses Cases

• Spark currently requires Java 8 to run. On a system where the default Java installation is not Java 8. The JA-
VA_HOME environment variable can be used to set the Spark Java version to Java 8.

• Typically when a job is run on a Spark cluster, it will take ownership of all worker nodes. In a shared cluster
environment this may not be ideal. Using the SPARK_MASTER_OPTS attribute it is possible to set a limit to the
number of worker nodes one job can utilize.

© 2021 HPCC Systems®. All rights reserved
7



HPCC / Spark Integration
The Spark HPCC Systems Connector

The Spark HPCC Systems Connector

Overview
The Spark-HPCCSystems Distributed Connector is a Java library that facilitates access from a Spark cluster to data
stored on an HPCC Systems cluster. The connector library employs the standard HPCC Systems remote file read
facility to read data from either sequential or indexed HPCC datasets.

The data on an HPCC cluster is partitioned horizontally, with data on each cluster node. Once configured, the HPCC
data is available for reading in parallel by the Spark cluster.

In the GitHub repository (https://github.com/hpcc-systems/Spark-HPCC) you can find the source code and examples.
There are several artifacts in the DataAccess/src/main/java folder of primary interest. The org.hpccsystems.spark.H-
pccFile class is the façade of a file on an HPCC Cluster. The org.hpccsystems.spark.HpccRDD is a resilient distributed
dataset derived from the data on the HPCC Cluster and is created by the org.hpccsystems.spark.HpccFile.getRDD(…)
method. The HpccFile class supports loading data to construct a Dataset<Row> object for the Spark interface. This
will first load the data into an RDD<Row> and then convert this RDD to a Dataset<Row> through internal Spark
mechanisms.

There are several additional artifacts of some interest. The org.hpccsystems.spark.ColumnPruner class is provided
to enable retrieving only the columns of interest from the HPCC Cluster. The targetCluster artifact allows you to
specify the HPCC cluster on which the target file exists. The org.hpccsystems.spark.thor.FileFilter class is provided
to facilitate filtering records of interest from the HPCC Cluster.

The git repository includes two examples under the Examples/src/main/scala folder. The examples (org.hpccsystem-
s.spark_examples.Dataframe_Iris_LR and org.hpccsystems.spark_examples.Iris_LR) are Scala Objects with a main()
function. Both examples use the classic Iris dataset. The dataset can be obtained from a variety of sources, including the
HPCC-Systems/ecl-ml repository. IrisDs.ecl (can be found under the ML/Tests/Explanatory folder: https://github.com/
hpcc-systems/Spark-HPCC/blob/master/Examples/src/main/ecl/IrisDS.ecl) can be executed to generate the Iris dataset
in HPCC. A walk-through of the examples is provided in the Examples section.

The Spark-HPCCSystems Distributed Connector also supports PySpark. It uses the same classes/API as Java does.

As is common in Java client communication over TLS, Spark-HPCC connectors targeting an HPCC
cluster over TLS will need to import the appropriate certificates to local Java keystore.

*One way to accomplish this is to use the keytool packaged with Java installations. Refer to the keytool
documentation for usage.

© 2021 HPCC Systems®. All rights reserved
8



HPCC / Spark Integration
The Spark HPCC Systems Connector

Special considerations

Unsigned Value Overflow

Java does not support an unsigned integer type so reading UNSIGNED8 values from HPCC data can cause an integer
overflow in Java. UNSIGNED8 values are often used as unique identifiers in datasets, in which case overflowing
would be acceptable as the overflowed value will still be unique.

The Spark-HPCC connector allows unsigned values to overflow in Java and will not report a exception. The caller is
responsible for interpreting the value based on the recdef isunsigned flag.

© 2021 HPCC Systems®. All rights reserved
9



HPCC / Spark Integration
The Spark HPCC Systems Connector

Spark support in ECL Watch
As a part of HPCC Systems, the Spark connector can be monitored from the ECL Watch interface. See the ECL Watch
manual for more information about using ECL Watch.

The SparkThor cluster is listed on the ECL Watch System Servers page. To access the Systems Servers page:

• In ECL Watch, click on the operations icon/link

• Click on the System Servers tab

This reports information for the manager node of the integrated Spark cluster. Here you can verify that the cluster is
up and running, and you can run preflight by selecting the SparkThor cluster and pressing the submit button at the
bottom of that page.

Click on the disk icon next to your SparkThor cluster to access its logs.

Click on the blue information icon to view more integrated Spark cluster information.

© 2021 HPCC Systems®. All rights reserved
10



HPCC / Spark Integration
The Spark HPCC Systems Connector

Primary Classes
The HpccFile class and the HpccRDD classes are discussed in more detail below. These are the primary classes used
to access data from an HPCC Cluster. The HpccFile class supports loading data to construct a Dataset<Row> object
for the Spark interface. This will first load the data into an RDD<Row> and then convert this RDD to a Dataset<Row>
through internal Spark mechanisms.

The org.hpccsystems.spark.HpccFile class has several constructors. All of the constructors take information about the
Cluster and the name of the dataset of interest. The JAPI WS-Client classes are used to access file detail information.
A definition used to select the columns to be returned and a definition to select the rows to be returned could also be
supplied. These are discussed in the Additional Classes of Interest section below. The class has two methods of primary
interest: the getRDD(…) method and the getDataframe(…) method, which are illustrated in the Example section.

The HpccFile class getRecordDefinition() method can be used to retrieve a definition of the file. The getFileParts()
method can be used to see how the file is partitioned on the HPCC Cluster. These methods return the same information
as can be found on the ECL Watch dataset details page DEF tab and the PARTS tab respectively.

The org.hpccsystems.spark.HpccRDD class extends the RDD<Record> templated class. The class employs the org.h-
pccsystems.spark.HpccPart class for the Spark partitions. The org.hpccsystems.spark.Record class is used as the con-
tainer for the fields from the HPCC Cluster. The Record class can create a Row instance with a schema.

The HpccRDD HpccPart partition objects each read blocks of data from the HPCC Cluster independently from each
other. The initial read fetches the first block of data, requests the second block of data, and returns the first record.
When the block is exhausted, the next block should be available on the socket and new read request is issued.

The HpccFileWriter is another primary class used for writing data to an HPCC Cluster. It has a single constructor
with the following signature:

public HpccFileWriter(String connectionString, String user, String pass) throws Exception { 

The first parameter connectionString contains the same information as HpccFile. It should be in the following format:
{http|https}://{ECLWATCHHOST}:{ECLWATCHPORT}

The constructor will attempt to connect to HPCC. This connection will then be used for any subsequent calls to save-
ToHPCC.

public long saveToHPCC(SparkContext sc, RDD<Row> scalaRDD, String clusterName, 
                        String fileName) throws Exception {

The saveToHPCC method only supports RDD<row> types. You may need to modify your data representation to use
this functionality. However, this data representation is what is used by Spark SQL and by HPCC. This is only supported
by writing in a co-located setup. Thus Spark and HPCC must be installed on the same nodes. Reading only supports
reading data in from a remote HPCC cluster.

The clusterName as used in the above case is the desired cluster to write data to, for example, the "mythor" Thor
cluster. Currently there is only support for writing to Thor clusters. Writing to a Roxie cluster is not supported and will
return an exception. The filename as used in the above example is in the HPCC format, for example: "~example::text".

Internally the saveToHPCC method will Spawn multiple Spark jobs. Currently, this spawns two jobs. The first job
maps the location of partitions in the Spark cluster so it can provide this information to HPCC. The second job does
the actual writing of files. There are also some calls internally to ESP to handle things like starting the writing process
by calling DFUCreateFile and publishing the file once it has been written by calling DFUPublishFile.

© 2021 HPCC Systems®. All rights reserved
11



HPCC / Spark Integration
The Spark HPCC Systems Connector

Using the Spark Datasource API to Read and Write
Example Python code:

# Connect to HPCC and read a file
df = spark.read.load(format="hpcc",
                     host="127.0.0.1:8010",
                     password="",
                     username="",
                     limitPerFilePart=100,        
                                      # Limit the number of rows to read from each file part
                     projectList="field1, field2, field3.childField1",     
                                      # Comma separated list of columns to read
                     fileAccessTimeout=240,
                     path="example::file")
# Write the file back to HPCC
df.write.save(format="hpcc",
              mode="overwrite",        
                   # Left blank or not specified results in an error if the file exists
              host="127.0.0.1:8010",
              password="",
              username="",
              cluster="mythor",
              path="example::file")

Example Scala code:

// Read a file from HPCC
val dataframe = spark.read.format("hpcc")
                .option("host","127.0.0.1:8010")
                .option("password", "")
                .option("username", "")
                .option("limitPerFilePart",100)
                .option("fileAccessTimeout",240)
                .option("projectList","field1, field2, field3.childField")
                .load("example::file")
// Write the dataset back
   dataframe.write.mode("overwrite")
                   .format("hpcc")
                   .option("host","127.0.0.1:8010")
                   .option("password", "")
                   .option("username", "")
                   .option("cluster","mythor")
                   .save("example::file")

Example R code:

df <- read.df(source = "hpcc",
              host = "127.0.0.1:8010",
              path = "example::file",
              password = "",
              username = "",
              limitPerFilePart = 100,
              fileAccessTimeout = 240,
              projectList = "field1, field2, field3.childField")
write.df(df, source = "hpcc",
             host = "127.0.0.1:8010",
             cluster = "mythor",
             path = "example::file",
             mode = "overwrite",
             password = "",
             username = "",
             fileAccessTimeout = 240)

© 2021 HPCC Systems®. All rights reserved
12



HPCC / Spark Integration
The Spark HPCC Systems Connector

Additional Classes of interest
The main classes of interest for this section are column pruning and file filtering. In addition there is a helper class to
remap IP information when required, and this is also discussed below.

The column selection information is provided as a string to the org.hpccsystems.spark.ColumnPruner object. The
string is a list of comma separated field names. A field of interest could contain a row or child dataset, and the dotted
name notation is used to support the selection of individual child fields. The ColumnPruner parses the string into a
root TargetColumn class instance which holds the top level target columns. A TargetColumn can be a simple field or
can be a child dataset and so be a root object for the child record layout.

The row filter is implemented in the org.hpccsystems.spark.thor.FileFilter class. A FileFilter instance is constricted
from an array of org.hpccsystems.spark.thor.FieldFilter objects. Each FieldFilter instance is composed of a field name
(in doted notation for compound names) and an array of org.hpccsystems.spark.thor.FieldFilterRange objects. Each
FieldFilterRange instance can be an open or closed interval or a single value. The record is selected when at least one
FieldFilterRange matches for each of the FieldFilter instances in the array.

The FieldFilterRange values may be either strings or numbers. There are methods provided to construct the following
range tests: equals, not equals, less than, less than or equals, greater than, and a greater than or equals. In addition, a
set inclusion test is supported for strings. If the file is an index, the filter fields that are key fields are used for an index
lookup. Any filter field unmentioned is treated as wild.

The usual deployment architecture for HPCC Clusters consists of a collection of nodes on a network. The file manage-
ment information includes the IP addresses of the nodes that hold the partitions of the file. The Spark-HPCC connector
classes use these IP addresses to establish socket connections for the remote read. An HPCC Cluster may be deployed
as a virtual cluster with private IP addresses. This works for the cluster components because they are all on the same
private LAN. However, the Spark cluster nodes might not be on that same LAN. In this case, the org.hpccsystems.s-
park.RemapInfo class is used to define the information needed to change the addressing. There are two options that can
be used. The first option is that each Thor worker node can be assigned an IP that is visible to the Spark cluster. These
addresses must be a contiguous range. The second option is to assign an IP and a contiguous range of port numbers.
The RemapInfo object is supplied as a parameter.

© 2021 HPCC Systems®. All rights reserved
13



HPCC / Spark Integration
The Spark HPCC Systems Connector

Examples
We will walk through the two examples below utilizing a Spark environment. Additionally, the repository provides
testing programs (in the DataAccess/src/test folder) that can be executed as stand-alone examples. 

These test programs are intended to be run from a development IDE such as Eclipse via the Spark-submit application
whereas the examples below are dependent on the Spark shell.

The following examples assume a Spark Shell. You can use the spark-submit command if you intend to compile and
package these examples. To properly connect your spark shell to the Integrated Spark cluster, provide the following
parameters when starting the shell:

bin/spark-shell  \
 --master=<spark://{remotesparkhost-IP}:{sparkport}> --conf="spark.driver.host={localhost-ip}" 

Iris_LR
This example assumes that you have Spark Shell running. The next step is to establish your HpccFile and your RDD
for that file. You need the name of the file, the protocol (http or https), the name or IP of the ESP, the port for the ESP
(usually 8010), and your user account and password. The sc value is the SparkContext object provided by the shell.

 val espcon = new Connection("http", "myeclwatchhost", "8010");
 espcon.setUserName("myuser");
 espcon.setPassword("mypass");
 val file = new HpccFile("myfile",espcon);

Now we have an RDD of the data. Nothing has actually happened at this point because Spark performs lazy evaluation
and there is nothing yet to trigger an evaluation.

The Spark MLLib has a Logistic Regression package. The MLLib Logistic Regression expects that the data will be
provided as Labeled Point formatted records. This is common for supervised training implementations in MLLib.
We need column labels, so we make an array of names. We then make a labeled point RDD from our RDD. This is
also just a definition. Finally, we define the Logistic Regression that we want to run. The column names are the field
names in the ECL record definition for the file, including the name “class” which is the name of the field holding
the classification code.

 val names = Array("petal_length","petal_width", "sepal_length", 
                   "sepal_width")
 var lpRDD = myRDD.makeMLLibLabeledPoint("class", names)
 val lr = new LogisticRegressionWithLBFGS().setNumClasses(3)

The next step is to define the model, which is an action and will cause Spark to evaluate the definitions.

 val iris_model = lr.run(lpRDD)

Now we have a model. We will utilize this model to take our original dataset and use the model to produce new labels.
The correct way to do this is to have randomly sampled some hold out data. We are just going to use the original
dataset because it is easier to show how to use the connector. We then take our original data and use a map function
defined inline to create a new record with our prediction value and the original classification.

 val predictionAndLabel = lpRDD.map {
   case LabeledPoint(label, features) =>
     val prediction = iris_model.predict(features)
   (prediction, label)
 }

The MulticlassMetrics class can now be used to produce a confusion matrix.

 val metrics = new MulticlassMetrics(predictionAndLabel)

© 2021 HPCC Systems®. All rights reserved
14



HPCC / Spark Integration
The Spark HPCC Systems Connector

 metrics.confusionMatrix

Dataframe_Iris_LR
The Dataframe_Iris_LR is similar to the Iris_LR, except that a Dataframe is used and the new ML Spark classes are
used instead of the old MLLib classes. Since ML is not completely done, we do fall back to an MLLib class to create
our confusion matrix.

Once the Spark shell is brought up, we need our import classes.

 import org.hpccsystems.spark.HpccFile
 import org.apache.spark.sql.Dataset
 import org.apache.spark.ml.feature.VectorAssembler
 import org.apache.spark.ml.classification.LogisticRegression
 import org.apache.spark.mllib.evaluation.MulticlassMetrics

The next step is to establish the HpccFile object and create the Dataframe. The spark value is a SparkSession object
supplied by the shell and is used instead of the SparkContext object.

 val espcon = new Connection("http", "myeclwatchhost", "8010");
 espcon.setUserName("myuser");
 espcon.setPassword("mypass");
 val file = new HpccFile("myfile",espcon);

The Spark ml Machine Learning classes use different data container classes. In the case of Logistic Regression, we need
to transform our data rows into a row with a column named “features” holding the features and a column named “label”
holding the classification label. Recall that our row has “class”, “sepal_width”, “sepal_length”, “petal_width”, and
“petal_length” as the column names. This kind of transformation can be accomplished with a VectorAssembler class.

 val assembler = new VectorAssembler()
 assembler.setInputCols(Array("petal_length","petal_width",
                              "sepal_length", "sepal_width"))
 assembler.setOutputCol("features")
 val iris_fv = assembler.transform(my_df)
                              .withColumnRenamed("class", "label")

Now that the data (iris_fv) is ready, we define our model and fit the data.

 val lr = new LogisticRegression()
 val iris_model = lr.fit(iris_fv)

We now want to apply our prediction and evaluate the results. As noted before, we would use a holdout dataset to
perform the evaluation. We are going to be lazy and just use the original data to avoid the sampling task. We use the
transform(…) function for the model to add the prediction. The function adds a column named “prediction” and defines
a new dataset. The new Machine Learning implementation lacks a metrics capability to produce a confusion matrix, so
we will then take our dataset with the prediction column and create a new RDD with a dataset for a MulticlassMetrics
class.

 val with_preds = iris_model.transform(iris_fv)
 val predictionAndLabel = with_preds.rdd.map(
 r => (r.getDouble(r.fieldIndex("prediction")),
 r.getDouble(r.fieldIndex("label"))))
 val metrics = new MulticlassMetrics(predictionAndLabel)
 metrics.confusionMatrix

© 2021 HPCC Systems®. All rights reserved
15


	HPCC / Spark Integration
	Table of Contents
	HPCC / Spark Installation and Configuration
	Spark Installation
	Installing the Spark Plug-in
	CentOS/Red Hat
	Ubuntu/Debian


	Spark Configuration
	Integrated Spark Cluster Configuration Options
	Example Uses Cases



	The Spark HPCC Systems Connector
	Overview
	Special considerations
	Unsigned Value Overflow

	Spark support in ECL Watch

	Primary Classes
	Using the Spark Datasource API to Read and Write

	Additional Classes of interest
	Examples
	Iris_LR
	Dataframe_Iris_LR



