ECL Language Reference

Boca Raton Documentation Team

‘. @

HPCC SYSTEMS®

ECL Language Reference

ECL Language Reference
Boca Raton Documentation Team
We welcome your comments and feedback about this document via email to <docfeedback @hpccsystems.com> subject to the HPCC Contribution

Agreement at: hpccsystems.com/contribution. Please include Documentation Feedback in the subject line and reference the document name, page
numbers, and current Revision Number in the text of the message.

LexisNexis and related logos, designs, trade dress, and trademarks are owned by Reed Elsevier Properties Inc. and its affiliates, used under license
and not subject to the Creative Commons license. Other trademarks owned by their respective companies and not subject to the Creative Commons
license.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

This document is licensed under the Creative Commons License CC BY-ND 3.0 applicable to the jurisdiction of the principal location of the user,
as available; otherwise, the CC BY-ND 3.0 Unported (https://creativecommons.org/licenses/by-nd/3.0/).

2020 Version 7.10.4-1

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
2

ECL Language Reference

a1 oo 18 ox o o ISP 8
(Dol gy 1= gl (o TS 1 Do (1 = P 8
DocumeNntation CONVENLIONSiieetteeietie ettt e e eaii e e et e e e etereeeae e e e et e eeebe e eeetan s eeeetanaeeeernnnns 9

L@ = T xS 10
L@ Y = PP 10
L0102 0 | £ TP TP 11
[11 (Lo PP 14
TS Tol B L T a TN Lo g TR N/ = 16
R wa g0t =l | =T S 19
Function Definitions (Parameter PaSsing)cvvuiiiiiieiiii e ee e e e e e e e e e e e e e e aene s 20
(D 1T Lo s Y A=] o] SO 25
Field and Definition QUalifiCAIONcouuiiiiiiiiii e e e e e e e 27
ACEONS AN DEfINITIONS ...ciiitieee et e et e e et e e e et e e e e et e e e et e e e e et e eeeetnn s 29

= Lo g R T o @] 1= = o] =P 30
EXPreSSioNS N0 OPEIELOISuueiitnieiieeeiieeete e et e et e e et e e st e e et eeaa e eat e e st e etn e eataessnaestnaeesnaeesnares 30
(oo [[or= IO o= = 0] &= T 32
R W e (o = Q@)1= - (0= PN 33
S 001 = (0] £ T PRSPPI 35
S 100 O] o= = (o] £ 36
NN 01 = (o PPN 37
[l IV e A @ o1 = | (o PP 38

RV =110 T 15/ 1= 39
121010 PP 39
INTEGER ..ottt ittt ettt e et e ettt e et et e e e et et e e e eatn e e e e e tbn e e e eatn e e e etan e e e enans 40
A PSPPI 41
@ PP 42
STRING oottt et e e ettt e e ettt e e e e et e e e et e e ettt e e e et b e e e e at e e e et e e e aatnaaaaaes 43
L@ S I NPT 44
UNITCODE ...ttt e e ettt e e e e et e e et et e e e e et e e e e e ta e e e e ett e e e e eba e e e e eba e eeeennnns 45
LU I P 46
5N PSP 47
BT S 1 I PP 48
VARUNICODE ...ttt ettt ettt e et e e et e et et e e e e et e e e e et e e e e et e eeeetnnns 49
S O PPN 50
I 4 = PPN 51
RECORDOIF ...ttt ettt et e ettt e ettt s e e ettt s e e ettt e e e ettt e e e ettn s e e e ettt e e eestnneeaestn s eeaestnaaeaees 52
e N L 53
I8/ 1S3OS 54

RECOrd SrUCLUrES AN FIIES . .ooviiiieii e et e e e e e et e e e e et e e e eateneeeees 57
RECORD SITUCIUIE ... ctieete ettt ettt et e e e et e e e et e et e e et e et e e e e e e e e enreenreennerneerneennes 57
N N PP 66
[L0 110 11N o A PP 81
IN D EX ittt e et et e e e et e et e e et e ettt e e et 83
Scope and LOgIiCal FilENAMES ... couuii e e e e e e e e e et 86
Implicit Dataset REIGHONAITYccuuiiiieiii e e e e e e e e e e e e eenas 89

F N L= T B == N IR/ o1 90
TYPE SHTUCKUIE ...ttt ettt e e ettt e et et e e et et e et e e eareenreen s e e e et e e e eneennas 90
TYPE Structure Special FUNCLIONSciiiiiiii e e e e e e e e e e et e e et e e e eaneees 91

= S T o TS U] o] Lo SN 93
L 6 110 TS U o] oo o AP 93
PARSE PatterN ValUB TYPES ..vvuiiiiieiii et e e e et e e e et e e e e e e e et e e e e et e e et e e et e eat e eaanaaaenaaes 94
NLP RECORD and TRANSFORM FUNCHIONScviuiiieiiiiiiee et e et e e s e et e et e e e e e e e enen s 98
XML Parsing RECORD and TRANSFORM FUNCLIONSuiiiiiiiieiiiiineeceis et 100

RIS V7= o I Q= VAT o L 102

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
3

ECL Language Reference

2 PRI 102
O = LT 103
) @] = PP 104
(1@ U= 2= YY) (o 105
1Y = PR 106
KEYED QN0 WILD ..ottt ettt ettt et e e et e e et e e e e e e e et e et e e e e e e e s e erneeanees 108
(I = = o 1 I TR 110
LIKELY @N0 UNLIKELY .ottt ettt e e e e e e e e e et e et e et e et e et e et e eaeeeans 111
ROWS(LEFT) and ROWS(RIGHT) ...uiiiiiiiiiieiii et e e e e e e e et e e e et e e ean e eees 112
S I PP 113
SHARED ...ttt et e e e e aaa 114
S L PPN 115
IR0 o I A R P 116
S Lo = IS {0 o =S 117
L] L N (@ 1 1 ox ([=N 118
Y o IS 1 o (0 P 125
FUNGCTION SEUCEUIE ... ivniiteit et ettt e e e e et et e et ettt e et e e e e et e et e et e e st e e s e e aa e et e eaeeneens 127
FUNCTIONMAGCRO SHUCEUIE «..viieteei ettt et et et e e e et et e et et et e e et e et e et e et e et s anesaneeaeeans 130
INTERFACE SIUCLUIE . .vuitiit ittt ettt et e e e e e e et et e et et e e et e et e et e et e e e aaeeaeeens 132
Y O (@ S 1 U o (= 134
MODULE SHUCLUIE «...iviiieii ettt ettt e et e e e e e e e et e et et e e et e et e et e et eenns 136
TRANSFORM SHUCEUIEivuiiteiteit et e et e e et e et e e e et e et e e et et e et e et e et e et e st sanesanesaneeseees 139
BUITt-IN FUNCEIONS AN ACHIONS 1.ttt ettt et e e e e et et e et et e e et e et e et e et earans 142
2 = 1 PRSP 143
Y L0 PN 144
A G G REGATE ..ouiiiitie et 145
ALLNODES ... oottt ettt ettt e et 148
2 e T T PTRN 149
S | PR 150
A SN oo e e et e e 151
F NS = PP 152
ASSTRING .oiiiiiiii ettt e e e et et et e e e et aaas 154
F 2L AN) T 155
F N N) P 156
AV E o e e et 157
1011 0 PP 158
A SE et e 163
(7N 01 T PTRPPN 164
(O (00 S PPN 166
(O (010 1= N T PTNN 167
(O (10 S S o I TP 168
CLUSTERSIZE ... ottt ettt et e e e e e e e et e et et e et e et e et e e b eeaas 169
(00 1Y 1 =11 1N PSR 170
CORRELATION L.ttt ettt e e e e e e e e e e et e et et e e et e et e et e st eaaesaneeaneeens 173
(00 1 TP 175
(00 1 T 176
(00 111\ I PP 177
COV ARIANCE ...t et et e et e e e e e et e et et e et e et e e e aeeans 179
(01 N USRI 181
()] T 111 PPN 182
[0 T | PP 185
DENORMALIZE ..ottt e e e e e e e e e e e e e et e e eaaes 186
DISTRIBUTE ..ottt et ettt et e e et e e et e e e et e e e e et e e et e et e et e et e et e etaeranns 189
DISTRIBUTED ...uitniiiiiit ittt ettt et e et e et e et et e e et e e e et e et e et e et e eaneeeneeaneees 192

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
4

ECL Language Reference

DISTRIBUTION ...eiiiiiiiii ettt s e et e e e e e e et e e e eaa e 193
EB CDIC it 195
BN T H e 196
ERROR .o e 197
EV A LUATE o e e 198
BV BN T e 200
EVENTNAME et e 201
EV EN T EX T RA e e 202
B ST S e 203
P e 204
e I PPN 205
FATLCODE ...t e e 206
FAILMESSAGE ..o 207
FE T CH o 208
FROMUISON ..ottt e e e e b et et e st e e e e s ab e naa e ees 210
FROMUNICODE ...ttt e r e e e ees 211
FROMXML o e et e e e e e 212
GETENV e 213
GLOBAL ot 214
GRA PH e 215
GROUP .. e 217
H A SH 219
HA SH S o 220
HASHGBA ..o 221
HASHGCRC .o e 222
HASHMDS .o 223
HAVING e e 224
HT TP AL oo e et 225
PP 227
PP 228
IV PO R T e 229
INT FORM A T e et e e e e e e s e 230
ISVALID e e 231
LT E R A T E e 232
JO N e 234
KEY DI e e e e 243
KEY PA T CH o e 244
KEYUNICODE ...t e e e e e e aaa e ees 246
LEN G T H o e 247
L B RA RY o e 248
I TSP 250
LN e 252
LOAD XML e 253
L O A L i 255
LG it 256
L OO e e 257
A P e 260
Y PP 261
MERGE ..o e 262
MERGEUJOIN ..o e 264
1 PPN 266
NOLOCAL oot et e e e e 267
NONEM T Y e e e e e 268
NORMALIZE ..o e r e e 269

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
5

ECL Language Reference

NOFOLD ..ttt ettt et ettt ettt et ettt e et et e e et et et e e et et r e, 272
NOTHOR ...ttt et ettt ee ettt et et e e et et ettt et et ettt et e et s e 273
NOTIFY oottt ettt et ettt ettt ettt et et e e ee et e e e et e et 274
ORDERED ...ttt et ettt ettt ettt et et ettt et ettt e ettt ettt ettt 275
OUTPUT oottt ettt ettt ettt ettt ettt ettt ettt et 276
PARALLEL ..ottt ettt ettt ettt ettt ettt ettt ettt 285
PARSE ...ttt ettt ettt ettt ettt 286
PIPE ettt ettt ettt ettt ettt 292
POWER ..ttt ettt ee et et ee et et e ettt et et et ettt e et ettt e et ettt e et et et e et 294
PRELOAD ...ttt ettt ettt ettt ettt ettt e ettt e ettt e et 295
PROCESS ...ttt ettt ee ettt ettt e et et et et e et et et e et et et e ettt ettt 296
PROJECT oottt ettt ettt ettt ettt e et ettt et et e e ettt e ettt 298
PULL 1ottt ettt ettt et e ettt ettt et ettt ettt ettt ettt ettt e, 302
RANDOM ...ttt ettt et ettt e et ettt e e ettt e et ettt e et e et e e 303
RANGE ...ttt ee ettt ettt et e ettt ettt ettt ettt ettt 304
RANK <ottt ettt ettt ettt ettt ettt ettt ettt ettt 305
RANKED ..ottt ettt ettt e e et ettt et et et ettt e ettt et ettt r e 306
REALFORMAT ..ottt ettt ee et e ettt et e e et et ee et e e es e 307
REGEXFIND ...t eeeee e eeeee et e et e ettt et ettt ee e et e et et et e et et et et e ee e eee et n e 308
REGEXFINDSET ...ttt eeeee et e et et e et e eet et et ee et s s e et et e et et et et e e et ee et ee e 309
REGEXREPLACE ...ttt ee ettt te ettt e et et e ettt ettt e e et eeee e es e 310
REGROUP ...ttt ettt ettt ettt ettt ettt ettt e ettt e, 311
REJECTED ..ottt ee ettt et e et et e et et e e et e e e et e ettt ee e et e e et et n e 313
ROLLUP ..ottt ettt ettt ettt ettt ettt ettt ettt et ettt en e 314
ROUND ..ottt ettt ettt ettt et ettt et ettt ettt ettt e et ettt 318
ROUNDUP ...ttt ettt ettt ettt ettt ettt ettt et et e ettt es e 319
ROW .ttt ettt ettt ettt et e ettt ettt e ettt ettt ettt 320
ROWDIFF ..ottt ettt ettt ettt ettt et ettt e et et e e et et e ettt n et en e, 324
SAMPLE .. oottt ettt 325
SEQUENTIAL .ttt ettt ettt e ettt ettt ettt ettt ettt ettt e et r e 326
SET ettt ettt ettt 327
SIN ettt ettt ettt ettt ettt 329
SINH ettt ettt ettt ettt ettt ettt 330
SIZEOF .ottt ettt ettt 331
SOAPCALL ..ottt ettt ettt ettt ettt ettt ettt 332
SORT ettt ettt ettt ettt 336
SORTED .ottt e et ettt ettt et et et et e et et et et e et et ettt ettt 340
SORT ettt ettt ettt 341
STEPPED ..ottt ettt ettt ettt ettt ettt ettt 342
STORED ...ttt ettt e et e ettt ettt ettt et ettt ettt ettt 344
SUM ettt ettt ettt 345
TABLE ...ttt ettt ettt ettt 346
TAN oottt ettt ettt 348
TANH ettt ettt ettt ettt ettt ettt ettt ettt 349
THISNODE ...ttt ettt ettt e ettt ettt ettt e et ettt et ettt e et e ettt e e e e 350
TOUSON ..ottt ettt et ettt ettt et ettt ettt e et e ettt 351
TOPN .ottt ettt ettt ettt ettt ettt ettt ettt 352
TOUNICODE ...ttt ettt ettt ee et ettt et e ettt e e e et 353
TOXML vttt ettt ettt ettt ettt ettt ettt ettt ettt 354
TRACE .ottt ettt ettt ettt ettt ettt ettt ettt 355
TRANSFER ...ttt ettt ettt ettt et ettt et ettt te et e et ee ettt r et 357
TRIM ottt ettt ettt et e e e ettt e et et e et ettt ettt ettt ettt ettt ettt 358
TRUNGCATE .t eeeeeeee ettt ettt ettt ee e e et ee et ettt et e et ettt e st e e e et e e e e e et e s, 359
UNGROUP ...ttt ee ettt ettt ettt ettt ettt 360

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
6

ECL Language Reference

UNICODEORDERciiiiitiitis i et e ettt s e e e e ettt ettt e e e e e e e st e s e e e eeeeestesteaeeaeeessssnnnaaaaeeeaeannnes 361
UNORDEREDuuuiiiiiiiiiiiies e et s e e e e ettt e e e e e e e e e e ae et e e e e e e eeeaetaa e e s eeeaeeassnnsnaaaeeeaeeennres 362
BT 27 L N PPN 363
L2 N P 365
LT = RPN 366
L0 L PPN 367
L0740 = LS U 1N L P 368
XIMLDECODEcoiiitiiiiei e ettt s e e e e e e e et e ettt e e e e e e e e e e ta e e e e e e e e e et tanna e e e e e e e e antrra e aeas 369
XIMLENGCODE ..ottt e ettt e e e e e et e ettt e e e e et e e ettt e e e e e e e e e aettna e e e e e e aeeastanannaeees 370
AVAY R0 1 Lo TV = Y o= N 371
WOTKFIOW OVEIVIEW ..ot e e e e e e e e e e e e e et e e et e e et e e et e e et e eanneeeenns 372
L0 01 1 2 1N SRR 373
]] N I = S 374
I 375
GLOBAL = SEIVICE ttttuttiiii i e e ettt et e e e e ettt e e e e et e e et et s et e e et et aeetaa e e aeeeaeeaestat s neaeaeeeessnnnnn s 376
L] o N N 377
L L PRSI 378
ONWARNING ...ttt e et e e e e e e e e et e a s e e e e e e eeste e aaeeeeeeesestnseaeeeeeessnnnnnns 379
L S PSS 380
L] I S 382
L O)Y P 383
STORED - WOIKIIOW SEBIVICE ...vuiiiiiicii et e e e e e e e e e e et e e e et e e et e e ean e eees 384
SUCKCESSoiieiitie ittt e ettt et e e et et ettt e e e e et e et et e e e e et et e e et raeeaeeaaa i aaaeaaeanaras 386
LT = RPN 387
I 101 1o =T =T To 0T o (= PN 388
Template LangUage OVEIVIEIWuiiie e e e e e e et e e e e e e e e e e e et e e et e e et e e et e e et e e aaneeeenns 388
7 o 1 RSP 389
24 000 1N 11 172 VN 390
HDECLARE ...oeeiiiii e s et e e e e e e e e e e e e e e ettt aaaeeaeatt— e aaataeaarna, 391
HDEMANGLEoiiiiiicei e e e e e e aa 392
2 (P 393
2 | 394
2 | USRS 395
2y @ 15 Y SRR 398
S 400
2] I D N 17NN IR = P 401
PSS 402
2N 1Y 1 | S 403
HLOOP [HBREAK ... ittt et et e e et ettt e e e e e e e e e e et e e e e e e e e aaatr i raaaaaraaarn 404
FMANGLE ..ottt e e e e e e e e e e e e e — it raaeaeeeaa e aaaaaaanre 405
2@ N L2 o LN 406
2@] = I8 SRR 407
N PSSP 416
S I 1 O SSPPPRT 417
0 I G 418
2 N1 1 AN 1 PPN 419
FWARNING ..ot e e e e e e e e ettt et e e e teeeae s e e e e e aeeeestaaraaeeeeeeerara s 421
HWEBSERVICEuuiiiiiiiiiiee st s e e e et e et e e et ettt e e e e e et e e e et e e e e e e e e e ana it naaeeaaeaannes 422
1Y@ QL] 423
= =TS = VN 424
S Y s U (1 S 424
L 11 P 426
External Service ImMplemMENtationcooiuieiii e e e e e e e e e e et e e e aaas 427
o = PN 434

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
7

ECL Language Reference
Introduction

Introduction
Documentation Structure

This manua documents the Enterprise Control Language (ECL). ECL has been designed specifically for working
with huge sets of data. This book is designed to be both alearning tool and a reference work and is divided into the
following sections:

ECL Basics Addresses the fundamental concepts of ECL.

Expressions and Oper ators | Defines available operators and their expression evaluation precedence.
Value Types Introduces data types and type casting.

Record Structuresand Introduces the RECORD structure, DATASET, and INDEX.

Files

Alien Data Types Defines the TY PE structure and the functions it may use.

Natural Language Parsing | Defines the patterns and functions the PARSE function may use.
Support

Reserved K eywor ds Defines specia-use ECL keywords not elsewhere defined.
Special Structures Defines the TRANSFORM, MACRO, and other structures and their use.

Built-In Functions and Ac- | Defines the functions and actions available as part of the language.
tions

Workflow Services Defines the job execution/process control aspects of ECL.
Templates Defines the ECL Template commands.
External Services Defines the SERVICE structure and its use.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
8

ECL Language Reference
Introduction

Documentation Conventions
ECL Syntax Case

Although ECL isnot case-sensitive, ECL reserved keywords and built-in functionsin this document are always shown
in ALL CAPS to make them stand out for easy identification. Definition and record set names are always shown in
exampl e code as mixed-case. Run-on words may be used to explicitly identify purpose in examples.

Optional Iltems

Optional-use keywords and parameters are enclosed in square bracketsin syntax diagrams with either/or options sep-
arated by avertical bar (]), like this:

EXAM PLEFUNC(parameter [,optionalparameter] [,OPTIONAL | WORD])

Example Code

All example codein this document appearsasin the following listing:

Total Trades : = COUNT(Trades); // Total Trades is the Definition name
[/ COUNT is a built-in function, Trades is the name of a record set

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
9

ECL Language Reference
ECL Basics

ECL Basics
Overview

Enterprise Control L anguage (ECL) has been designed specifically for huge data projects using the LexisNexis High
Performance Computer Cluster (HPCC). ECL's extreme scalability comes from a design that allows you to leverage
every query you create for re-use in subsequent queries as needed. To do this, ECL takes a Dictionary approach to
building queries wherein each ECL definition defines an expression. Each previous Definition can then be used in
succeeding ECL definitions--the language extends itself as you use it.

Definitions versus Actions

Functionally, there are two types of ECL code: Definitions (AKA Attribute definitions) and executable Actions. Ac-
tionsare not valid for use in expressions because they do not return values. Most ECL codeis composed of definitions.

Definitions only define what isto be done, they do not actually execute. This means that the ECL programmer should
think in terms of writing code that specifies what to do rather than how to do it. Thisis an important concept in that,
the programmer is telling the supercomputer what needs to happen and not directing how it must be accomplished.
This frees the super-computer to optimize the actual execution in any way it needs to produce the desired resullt.

A second consideration is: the order that Definitions appear in source code does not define their execution order--ECL
isanon-procedural language. When an Action (such as OUTPUT) executes, al the Definitionsit needsto use (drilling
down to the lowest level Definitions upon which others are built) are compiled and optimized--in other words, unlike
other programming languages, thereisno inherent execution order implicit in the order that definitions appear in source
code (although there is a necessary order for compilation to occur without error--forward references are not allowed).
This concept of "orderless execution™ requires a different mindset from standard, order-dependent programming lan-
guages because it makes the code appear to execute "all at once.”

Syntax Issues

ECL is not case-sensitive. White space isignored, allowing formatting for readability as needed.

Commentsin ECL code are supported. Block comments must be delimited with /* and */.

/* this is a block cooment - the termi nator can be on the sanme |ine
or any succeeding line -- everything in between is ignored */

Single-line comments must begin with //.
/'l this is a one-line coment

ECL uses the standard object.property syntax used by many other programming languages (however, ECL is not an
object-oriented language) to qualify Definition scope and disambiguate field references within tables:

Modul eName. Definition //reference an definition from another nodul e/ fol der

Dat aset. Fiel d //reference a field in a dataset or recordset

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
10

ECL Language Reference
ECL Basics

Constants

String

All string literals must be contained within single quotation marks (**). All ECL codeis UTF-8 encoded, which means
that all strings are also UTF-8 encoded, whether Unicode or non-Unicode strings. Therefore, you must use a UTF-8
editor (such asthe ECL IDE program).

Toincludethesingle quote character (apostrophe) in aconstant string, prepend abackslash (\). Toincludethe backslash
character (\) in aconstant string, use two backslashes (\\) together.

STRINGO MyString2 := 'Fred\'s Place';
//eval uated as: "Fred's Pl ace"
STRINGO MyString3 := 'Fred\\G nger\'s Pl ace';

/leval uated as: "Fred\G nger's Pl ace"

Other available escape characters are:

\t tab

\n new line

\r carriage return

\ nnn 3 octa digits (for any other character)

\ uhhhh lowercase "u" followed by 4 hexadecimal digits (for any other UNICODE-only character)
MyStringl : = 'abcd';

MyString2 : = U abcd\ 353" ; /] becones 'abcdé'’

Hexadecimal string constants must begin with a leading "x" character. Only valid hexadecimal values (0-9, A-F)
may be in the character string and there must be an even number of characters.

DATA2 MyHexString := x'ODOA'; // a 2-byte hexadeci mal string

Data string constants must begin with aleading "D" character. Thisisdirectly equivalent to casting the string constant
to DATA.

My/Dat aString := D abcd'; // sane as: (DATA)'abcd'

Unicode string constants must begin with aleading "U" character. Characters between the quotes are utf8-encoded
and the type of the constant is UNICODE.

MyUni codeStri ngl :
MyUni codeString2 :
MyUni codeStri ng3 :

U abcd' ; /1 same as: (UN CODE)' abcd'
U abcd\ 353" ; /1 becones 'abcdé'
U abcd\ uOOEB' ; // becones 'abcdé' «'

UTF8 string constants must begin with leading "U8" characters. Characters between the quotes are utf8-encoded and
the type of the constant is UTF8.

M/UTF8Stri ng : = U8' abcd\ 353" ;

VARSTRING string constants must begin with aleading "V" character. The terminating null byte is implied and
type of the constant is VARSTRING.

MyVar String := V abcd'; // same as: (VARSTRI NG 'abcd'

QSTRING string constants must begin with aleading "Q" character. The terminating null byte isimplied and type
of the constant is VARSTRING.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
11

ECL Language Reference
ECL Basics

M/QString : = Q ABCD ; // sane as: (QSTRI NG ' ABCD

Numeric

Numeric constants containing a decimal portion are treated as REAL values (scientific notation is allowed) and those
without aretreated as INTEGER (see Value Types). Integer constants may be decimal, hexadecimal, or binary values.
Hexadecimal values are specified with either aleading "Ox" or atrailing "x" character. Binary values are specified
with either aleading "Ob" or atrailing "b" character.

M/l nt 1 = 10; /'l value of MyIntl is the | NTEGER val ue 10
M/l nt 2 = OxO0A; /] value of MyInt2 is the | NTEGER val ue 10
M/l nt 3 = 0AXx; /1 value of MyInt3 is the | NTEGER val ue 10
M/Int4 := 0b1010; // value of MyInt4 is the | NTEGER val ue 10
M/l nt 5 = 1010b; // value of MyInt5 is the I NTEGER val ue 10
M/Real 1 : = 10.0; /1 value of M/Real1l is the REAL val ue 10.0
M/Real 2 := 1.0el; // value of M/Real 2 is the REAL val ue 10.0

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
12

ECL Language Reference
ECL Basics

Compile Time Constants

The following system constants are available at compile time. These can be useful in creating conditional code.

__ ECL_VERSON__ A STRING containing the value of the platform version. For example, '6.4.0°
__ ECL_VERSION_MAJOR An INTEGER containing the value of the major portion of the platform version.
For example, '6'
_ ECL_VERSION_MINOR__ AnINTEGER containing the value of the minor portion of the platform version.
For example, '4'
_ ECL_LEGACY_MODE__ A BOOLEAN value indicating if it is being compiled with legacy IMPORT
semantics.
_0Ss A STRING indicating the operating system to which it is being compiled. Pos-
sible values are: ‘windows, 'macos, or 'linux'.
__STAND_ALONE__ A BOOLEAN value indicating if it is being compiled to a stand-alone exe-
cutable.
__TARGET _PLATFORM___ A STRING containing the value of the target platform (the type of cluster the
query was submitted to). Possible values are: 'roxi€', ‘hthor', or 'thorlcr'.
Example:
| MPORT STD;
STRI NGL4 f Get DateTi neString() :=
#| F(__ECL_VERSI ON_.MAJOR__ > 5) or ((__ECL_VERSION.MAJOR _ = 5) AND (__ECL_VERSION M NCR__ >= 2))

STD. Dat e. SecondsToSt ri ng(STD. Dat e. Current Seconds(true), ' %W%d%NNE) ;
#ELSE

FUNCTI ON
stringl4 fGetDineTine():= // 14 characters returned
BEGQ NC++
#option action
struct tmlocalt; /1 localtime in "tnl' structure
tine_t timeinsecs; /] variable to store tinme in secs

time(&imeinsecs);
localtinme_r(&ineinsecs, & ocal t);
char tenp[15];
strftine(tenp , 15, "%W%P@%PM/&E', & ocalt); // Formats the localtine to YYYYMVDDhhnmss
strncpy(__result, tenp, 14);
ENDC++;
RETURN f Get Di neTi ne() ;
END;
#END;

Runtime Expressions

The following system constants are evaluated at runtime. Technically, these are runtime expressions, not constants.
Therefore, they cannot be used in conditional code that requires a constant.

__ PLATFORM__ A STRING that represents the type of engine where the query is executing on.
Possible values are: 'roxi€', 'hthor', or 'thorlcr'.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
13

ECL Language Reference
ECL Basics

Definitions

Each ECL definition is the basic building block of ECL. A definition specifies what is done but not how it is to
be done. Definitions can be thought of as a highly developed form of macro-substitution, making each succeeding
definition more and more highly leveraged upon the work that has gone before. This results in extremely efficient
guery construction.

All definitions take the form:
[Scope] [ValueType] Name [(parms) | := Expression [:WorkflowService] ;

The Definition Operator (:= read as "is defined as") defines an expression. On the left side of the operator is an
optiona Scope (see Attribute Visibility), ValueType (see Value Types), and any parameters (parms) it may take (see
Functions (Parameter Passing)). Ontheright sideisthe expression that produces the result and optionally acolon (:)
and acomma-delimited list of WorkflowServices (see Wor kflow Services). A definition must be explicitly terminated
with a semi-colon (;). The Definition name can be used in subsequent definitions:

M/FirstDefinition :=5; //defined as 5
MySecondDefinition : = MyFirstDefinition + 5; //this is 10

Definition Name Rules

Definition names begin with a letter and may contain only letters, numbers, or underscores ().

M/_First_Definitionl :=5; // valid nane
My First Definition :=5; [// INVALID nane, spaces not all owed

Y ou may name a Definition with the name of a previously created module in the ECL Repository, if the attribute is
defined with an explicit ValueType.

Reserved Words

ECL keywords, built-in functions and their options are reserved words, but they are generally reserved only in the
context within which they are valid for use. Even in that context, you may use reserved words as field or definition
names, provided you explicitly disambiguate them, asin this example:

ds2 := DEDUP(ds, ds.all, ALL); //ds.all is the "all' field in the
//ds dataset - not DEDUP's ALL option

However, it is still agood ideato avoid using ECL keywords as definition or field names.

Definition or field names cannot begin with UNICODE_, UTF8_, or VARUNICODE _. L abels beginning with those
prefixes are treated as type names, and should be regarded as reserved.

Definition Naming

Use descriptive names for all EXPORTed and SHARED Definitions. This will make your code more readable. The
naming convention adopted throughout the ECL documentation and training courses is as follows:

Definition Type Are Naned

Bool ean Is...

Set Definition Set. ..

Record Set ... Dat aset Nane
For example:

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
14

ECL Language Reference

ECL Basics
| sTrue : = TRUE; // a BOOLEAN Definition
Set Nunbers := [1, 2, 3,4,5]; /1 a Set Definition
R People := People(firstnane[1l] = 'R); // a Record Set Definition

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
15

ECL Language Reference
ECL Basics

Basic Definition Types

The basic types of Definitions used most commonly throughout ECL coding are: Boolean, Value, Set, Record Set,
and TypeDef.

Boolean Definitions

A Boolean Definition is defined as any Definition whose definitionisalogical expression resultinginaTRUE/FALSE
result. For example, the following are all Boolean Definitions:

| sBool True
I sFloridian :
I sA dPerson :

TRUE;
Person. per_st = 'FL';
Per son. Age >= 65;

Value Definitions

A Value Definition is defined as any Definition whose expression is an arithmetic or string expression with a sin-
gle-valued result. For example, the following are all Vaue Definitions:

Val ueTrue 1= 1;
Fl ori di anCount : = COUNT(Person(Person.per_st = "'FL"));
a dAgeSum : = SUM Per son(Person. Age >= 65), Person. Age) ;

Set Definitions

A Set Definition is defined as any Definition whose expression is a set of values, defined within square brackets.
Constant sets are created as a set of explicitly declared constant values that must be declared within square brackets,
whether that set is defined as a separate definition or simply included in-line in another expression. All the constants
must be of the same type.

Setlnts =11,2,3,4,5]; // an INTEGER set with 5 el enents
SetReaIs:=[15 0,3.3,4.2,5.0];

I aREAL set with 5 el enents
Set StatusCodes := ['A",'B",'C,'D,'E];

// a STRING set with 5 el enents

The elements in any explicitly declared set can aso be composed of arbitrary expressions. All the expressions must
result in the same type and must be constant expressions.

Set Exp := [1, 2+3, 45, Sonel nt eger Defi ni ti on, 7*3] ;
/1 an | NTEGER set with 5 el enents

Declared Sets can contain definitions and expressions as well as constants as long as all the elements are of the same
result type. For example:

St at eCapitol (STRIN& state) :=
CASE(state, 'FL' => 'Tall ahassee', 'Unknown');
SetFloridaCities := ['Olando', StateCapitol (' FL'), 'Boca '+' Raton',
person[1].per_full _city];

Set Definitions can also be defined using the SET function (which see). Sets defined this way may be used like any
other set.

Set SoneFi el d : = SET(SoneFil e, SoneField);
/Il a set of SomeField val ues

Sets can also contain datasets for use with those functions (such as: MERGE, JOIN, MERGEJOIN, or GRAPH) that
require sets of datsets as input parameters.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
16

ECL Language Reference
ECL Basics

SetDS := [dsl, ds2, ds3]; // a set of datasets

Y ou can construct a DATASET from a SET.

SET OF STRING s := ['Jini,'Bob','Richard ,' Tom];
DATASET(s, { STRING txt});

Set Ordering and Indexing

Sets are implicitly ordered and you may index into them to access individual elements. Square brackets are used to
specify the element number to access. Thefirst element is number one (1).

M/Set :=1[5,4,3,2,1];
ReverseNum : = MySet[2]; //indexing to M/Set's el enent nunber 2,
//so ReverseNum contains the value 4

Strings (Character Sets) may also be indexed to access individual or multiple contiguous elements within the set of
characters (astring istreated asthough it were a set of 1-character strings). An element number within square brackets
specifies an individual character to extract.

MyString : = ' ABCDE ;
MySubString := MyString[2]; // MySubString is 'B

Substrings may be extracted by using two periods to separate the beginning and ending element numbers within the
square brackets to specify the substring (string slice) to extract. Either the beginning or ending element number may
be omitted to indicate a substring from the beginning to the specified element, or from the specified element through
to the end.

MyString : ="' ABCDE ;

MySubStringl := MyString[2..4]; // MySubStringl is 'BCD
MySubString2 := MyString[..4]; // MySubString2 is ' ABCD
MySubString3 := MyString[2..]; // MySubString3 is ' BCDE

Record Set Definitions

Theterm "Dataset” in ECL explicitly meansa"physical" datafile in the supercomputer (on disk or in memory), while
the term "Record Set" indicates any set of records derived from a Dataset (or another Record Set), usually based on
some filter condition to limit the result set to a subset of records. Record sets are also created as the return result from
one of the built-in functions that return result sets.

A Record Set Definition isdefined as any Definition whose expression isafiltered dataset or record set, or any function
that returns arecord set. For example, the following are al Record Set Definitions:

Fl ori daPer sons : = Person(Person.per_st ="'FL');
A dFl ori daPersons : = Fl ori daPer sons(Person. Age >= 65);

Record Set Ordering and Indexing

All Datasets and Record Sets are implicitly ordered and may be indexed to access individual records within the set.
Square brackets are used to specify the element number to access, and the first element in any set is number one (1).

Datasets (including child datasets) and Record Sets may use the same method as described above for strings to access
individual or multiple contiguous records.

M/Recl : = Person[1]; /1 first rec in dataset
M/Rec2 := Person[1..10]; // first ten recs in dataset
M/Rec4 := Person[2..]; /1 all recs except the first

Note: dg[1] and dg[1..1] are not the same thing--ds[1..1] is arecordset (may be used in recordset context) while dg[1]
isasingle row (may be used to reference single fields).

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
17

ECL Language Reference
ECL Basics

And you can also access individual fieldsin a specified record with a single index:

M/Field := Person[1].per_last_name; // last nanme in first rec

Indexing arecord set with a value that is out of bounds is defined to return a row where al the fields contain blank/
zero values. It is often more efficient to index an out of bound value rather than writing code that handles the special
case of an out of bounds index value.

For example, the expression:
I F(COUNT(ds) > 0, ds[1].x, 0);
issimpler as:

ds[1] . x //note that this returns 0 if ds contains no records.

TypeDef Definitions

A TypeDef Definition is defined as any Definition whose definition is a value type, whether built-in or user-defined.
For example, the following are all TypeDef Definitions (except GetXLen):

Get XLen(DATA x, UNSI GNED | en) : = TRANSFER(((DATA4) (x[1..1en])), UNSI GNED4) ;

EXPORT xstring(UNSI GNED | en) := TYPE
EXPORT | NTEGER PHYSI| CALLENGTH(DATA x) := Get XLen(x,len) + |en;
EXPORT STRI NG LOAD(DATA x) := (STRING X[(Il en+l1).. Get XLen(x, | en) + len];
EXPORT DATA STORE(STRI NG x) : = TRANSFER(LENGTH(x) , DATA4)[1..len] + (DATA) X;
END;

pstr := xstring(l); // typedef for user defined type
pppstr := xstring(3);
nameStr := STRIN&20; // typedef of a systemtype

nanesRecord : = RECORD
pstr surnaneg;
naneStr forenaneg;
pppSt r addr;

END;
/1 A RECORD structure is also a typedef definition (user-defined)

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
18

ECL Language Reference
ECL Basics

Recordset Filtering

Filtersare conditional expressions contained within the parenthesesfollowing the Dataset or Record Set name. Multiple
filter conditions may be specified by separating each filter expression with acomma(,). All filter conditions separated
by commas must be TRUE for arecord to be included, which makesthe commaan implicit AND operator (see L ogical
Operators) in this context only.

M/Recor dSet : = Person(per_last_nane >='T', per_last_nane < 'U);
/'l MyRecordSet contains people whose | ast nane begins with "T"
/1 the comma is an inplicit AND while al so functioning as
/1 an expression separator (inplicit parentheses)

M/Recor dSet : = Person(per_last_name >= 'T AND per_|ast_nane < 'U);
/'l exactly the sane | ogical expression as above
Rat eGE7trds := Trades(trd_rate >= '7");

Val i dTrades : = Trades(NOT rnsTrade. Mort gage AND
NOT rnsTrade. HasNarrati ve(rnsTrade. snd osed)) ;

Boolean definitions should be used as recordset filters for maximum flexibility, readability and re-usability instead
of hard-coding in a Record Set definition. For example, use:

IsRevolv := trades.trd_type = 'R
OR (~Val i dType(trades.trd_type)
AND trades.trd _acct[1] IN["4','5",'6']);
isBank := trades.trd_i nd_code I N Set Bankl ndCodes;
I sBankCard : = | sBank AND | sRevol v;

W't hi nDat e(| NTEGERL nonths) := ValidDate(trades.trd_drpt) AND
trades.trd_drpt_nmos <= nonths;

BankCar dTrades : = trades(i sBankCard AND Wt hi nDat e(6));

instead of:

BankCar dTrades := trades(trades.trd_i nd_code | N Set Bankl ndCodes,
(trades.trd_type = 'R OR
(~Val i dType(trades.trd_type) AND
trades.trd_acct[1] IN["4', "5, "6'])),
Val i dDat e(trades. trd_drpt),
trades.trd_drpt_nos <= 6);

Commas used to separate filter conditions in arecordset filter definition act as both an implicit AND operation and a
set of parentheses around the individual filters being separated. This results in atighter binding than if AND is used
instead of a comma without parentheses. For example, the filter expression in this definition::

BankMort Trades : = trades(i sBankCard OR i sMort gage, isOpen);
isevaluated asif it were written:
(i sBankCard OR i sMortgage) AND i sQpen

and not as:

i sBankCard OR i sWbrtgage AND i sOpen

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
19

ECL Language Reference
ECL Basics

Function Definitions (Parameter Pass-

ing)

All of the basic Definition types can aso become functions by defining them to accept passed parameters (arguments).
The fact that it receives parameters doesn't change the essential nature of the Definition's type, it smply makes it
more flexible.

Parameter definitions always appear in parentheses attached to the Definition's name. Y ou may define the function
to receive as many parameters as needed to create the desired functionality by simply separating each succeeding
parameter definition with a comma.

The format of parameter definitionsis asfollows:

DefinitionName([ValueType] AliasName [=DefaultValue]) := expression;

ValueType Optional. Specifiesthe type of data being passed. If omitted, the default isINTEGER
(see Value Types). This also may include the CONST keyword (see CONST) to in-
dicate that the passed value will always be treated as a constant.

AliasName Names the parameter for use in the expression.
DefaultValue Optional. Provides the value to use in the expression if the parameter is omitted. The

DefaultValue may be the keyword ALL if the ValueType is SET (see the SET key-
word) to indicate all possible valuesfor that type of set, or empty square brackets ([])
to indicate no possible value for that type of set.

expression The function's operation for which the parameters are used.

Simple Value Type Parameters

If the optional ValueType is any of the simple types (BOOLEAN, INTEGER, REAL, DECIMAL, STRING,
QSTRING, UNICODE, DATA, VARSTRING, VARUNICODE), the ValueType may include the CONST keyword
(see CONST) to indicate that the passed value will always be treated as a constant (typically used only in ECL pro-
totypes of external functions).
Val ueDefinition := 15;
Fi rst Functi on(I NTEGER x=5) := x + 5;

//takes an integer paraneter naned "x" and "x" is used in the

[larithmetic expression to indicate the usage of the paraneter

SecondDefinition := FirstFunction(Val ueDefinition);
/1 The val ue of SecondDefinition is 20

Thi rdDefinition := FirstFunction();
[/ The value of ThirdDefinition is 10, omtting the paraneter

SET Parameters

The DefaultValue for SET parameters may be a default set of values, the keyword ALL to indicate all possible values
for that type of set, or empty square brackets ([]) to indicate no possible value for that type of set (and empty set).

SET OF | NTEGER1 Set Val ues : = [5, 10, 15, 20] ;

I sl nSet Functi on(SET OF | NTEGERL x=Set Val ues,y) :=y IN x;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
20

ECL Language Reference
ECL Basics

QUTPUT(I sl nSet Function([1,2,3,4],5)); //false
QUTPUT(| sl nSet Function(,5)); // true

Passing DATASET Parameters

Passing aDATASET or a derived recordset as a parameter may be accomplished using the following syntax:
DefinitionName(DATASET (recstruct) AliasName) := expression;

The required recstruct names the RECORD structure that defines the layout of fields in the passed DATASET para
meter. The recstruct may aternatively use the RECORDOF function. The required AliasName names the dataset for
use in the function and is used in the Definition's expression to indicate where in the operation the passed parameter
isto beused. Seethe DATASET asa Value Type discussion in the DATASET documentation for further examples.

M/Rec := {STRINGL Letter};
SoneFile := DATASET([{'A'},{'B'},{'C},{'D}.{'E}], MRec);

Fi | ter edDS(DATASET(M/Rec) ds) := ds(Letter NOT IN['A','C,'E]);
// passed dataset referenced as "ds" in expression

OUTPUT(Fi | t er edDS(SoneFi | e)) ;

Passing DICTIONARY Parameters

Passing aDICTIONARY as a parameter may be accomplished using the following syntax:
DefinitionName(DICTIONARY (structure) AliasName) := expression;

The required structure parameter is the RECORD structure that defines the layout of fields in the passed DIC-
TIONARY parameter (usualy defined inline). The required AliasName namesthe DICTIONARY for usein the func-
tion and is used in the Definition's expression to indicate where in the operation the passed parameter is to be used.
Seethe DICTIONARY asa Value Type discussion in the DICTIONARY documentation.

rec : = RECORD
STRI NGLO col or;
UNSI GNED1 code;
STRI NGLO nane;

END;

Ds := DATASET([{'Black’ ,0 , 'Fred },
{'Brown' ,1, 'Seth'},
{' Red' .2, 'Sue'},
{'Wite' ,3, 'Jo'}], rec);

DsDCT : = DI CTI ONARY(DS, {col or => DS});

DCTrec : = RECORD
STRI NGLO col or =>
UNS| GNED1 code,
STRI NGLO nane,

END,;

InlineDCT : = DI CTI ONARY([{'Black' => 0, 'Fred'},
{*Brown' => 1, 'San},
{' Red' => 2, 'Sue'},
{"Wite' =>3, 'Jo'}],
DCTr ec) ;

MyDCTf unc(DI CTI ONARY(DCTr ec) DCT, STRI NGLO key) := DCT[key] . nane;

MyDCTf unc(| nl i neDCT, ' White'); //Jo
MyDCTf unc(DsDCT, ' Brown') ; /] Seth

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
21

ECL Language Reference
ECL Basics

Passing Typeless Parameters

Passing parameters of any type may be accomplished using the keyword ANY as the passed value type:

DefinitionName (ANY AliasName) := expression;

a := 10;

b := 20;

c:="'1;

d:="'2";

e :="'3,;

f :="'4";

sl :=[c,d];

s2 :=[e, f];

dsl : = DATASET(s1, {STRINGL Itr});
ds2 := DATASET(s2,{STRINGL Itr});
M/Func(ANY |, ANY r) :=1 + r;
My/Func(a, b) ; [/returns 30
M/Func(a, c); [/returns '101'
MyFunc(c, d); [/returns '12'
MyFunc(s1, s2); [lreturns a set: ['"1','2","'3",'4"]

MyFunc(ds1,ds2); //returns 4 records: '1', '2', '"3', and '4'

Passing Function Parameters

Passing a Function as a parameter may be accomplished using either of the following syntax options as the ValueType
for the parameter:

FunctionName(parameter s)

PrototypeName

FunctionName The name of afunction, the type of which may be passed as a parameter.

parameters The parameter definitions for the FunctionName parameter.

PrototypeName The name of a previously defined function to use as the type of function that may be
passed as a parameter.

The following code provides examples of both methods:

/la Function prototype:
I NTEGER acti onProt ot ype(| NTEGER v1, | NTEGER v2) := 0;

I NTEGER aveVal ues(| NTEGER v1, |NTEGER v2) := (vl + v2) DIV 2;
I NTEGER addVal ues(1 NTEGER v1, |NTEGER v2) := vl + v2;
I NTEGER rul ti Val ues(| NTEGER v1, | NTEGER v2) := vl * v2;

/la Function prototype using a function prototype:
I NTEGER appl yProt ot ype(| NTEGER v1, actionPrototype actionFunc) := O;

/lusing the Function prototype and a default val ue:

I NTEGER appl yVal ue2(| NTEGER v1,
acti onPrototype actionFunc = aveVal ues) :=
actionFunc(vl, vi1+1)*2;

/I Defining the Function paraneter inline, witha default val ue:
| NTEGER appl yVal ue4(| NTEGER v1,
I NTEGER acti onFunc(| NTEGER v1, | NTEGER v2) = aveVal ues)

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
22

ECL Language Reference
ECL Basics

;= actionFunc(vl, vi1+1)*4;
| NTEGER doAppl yVal ue(| NTEGER v1,
I NTEGER acti onFunc(| NTEGER v1, | NTEGER v2))
: = appl yVal ue2(v1+1, actionFunc);

/I produci ng sinple results:

OQUTPUT(appl yVal ue2(1)); /[l 2
QUTPUT(appl yVal ue2(2)); Il 4
QUTPUT(appl yVal ue2(1, addVal ues)); /Il 6
OUTPUT(appl yVal ue2(2, addVal ues)); /] 10
QUTPUT(appl yVal ue2(1, multi Val ues)); /Il 4
OQUTPUT(appl yVal ue2(2, nulti Val ues)); /] 12
OQUTPUT(doAppl yVal ue(1, multiVal ues)); /1 12
OQUTPUT(doAppl yVal ue(2, nulti Val ues)); /] 24

/1A definition taking function paraneters which thensel ves
// have paraneters that are functions...

STRI NG doMany (| NTEGER v1,
| NTEGER firstAction(l NTEGER v1,
| NTEGER act i onFunc(| NTEGER v1, | NTEGER v2)),
| NTEGER secondAct i on(| NTEGER v1,
I NTEGER act i onFunc(| NTEGER v1, | NTEGER v2)),
| NTEGER act i onFunc(| NTEGER v1, | NTEGER v2))
1= (STRINGfirstAction(vl, actionFunc) + ':' + (STRING secondaction(vl, actionFunc);

QUTPUT(doMany(1, appl yVal ue2, appl yVal ue4, addVal ues));
/] produces "6:12"

QUTPUT(doMany (2, appl yVal ue4, appl yVal ue2, mul ti Val ues));
/1 produces "24:12"

Passing NAMED Parameters

Passing values to a function defined to receive multiple parameters, many of which have default values (and are
therefore omittable), is usually accomplished by "counting commas" to ensure that the values you choose to pass are
passed to the correct parameter by the parameter's position in the list. This method becomes untenable when there are
many optional parameters.

The easier method isto use the following NAMED parameter syntax, which eliminates the need to include extraneous
commeas as place holders to put the passed values in the proper parameters:

Attr := FunctionName([NAMED] AliasName := value);

NAMED Optional. Required only when the AliasName clashes with a reserved word.

AliasName The names of the parameter in the definition's function definition. Thismust beavalid
label (See Definition Name Rules)

value The value to pass to the parameter.

Thissyntax isused in the call to the function and allows you to pass values to specific parameters by their AliasName,
without regard for their position in the list. All unnamed parameters passed must precede any NAMED parameters.

out put Row(BOOLEAN showA FALSE, BOOLEAN showB FALSE,
BOOLEAN showC = FALSE, STRI NG aVal ue = 'abc',
| NTEGER bVal ue = 10, BOOLEAN cVal ue = TRUE) :=
QUTPUT(| F(showA, ' a='+aVal ue,'')+
| F(showB,' b='+(STRI NG bVal ue,'’)+
| F(showe,' c='+(STRING cValue,'"));

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
23

ECL Language Reference

ECL Basics
out put Row() ; /| produce bl anks
out put Row(TRUE) ; /| produce "a=abc"
out put Row(, , TRUE) ; /| produce "c=TRUE"

out put Rowm(NAMED showB : = TRUE); //produce "b=10"

out put Rowm(TRUE, NAMED aVal ue : = ' Changed val ue');
/| produce "a=Changed val ue"

out put Row(, , , ' Changed val ue2' , NAMED showA : = TRUE);
/| produce "a=Changed val ue2"

out put Rowm showB : = TRUE) ; /| produce "b=10"

out put Rowm(TRUE, aVal ue : = ' Changed val ue');
out put Row(, , , ' Changed val ue2', showA : = TRUE);

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
24

ECL Language Reference
ECL Basics

Definition Visibility
ECL code, definitions, are stored in .ECL filesin your code repository, which are organized into modules (directories
or folderson disk). Each .ECL file may only contain asingle EXPORT or SHARED definition (see below) along with

any supporting local definitions required to fully define the definition's result. The name of the file and the name of
its EXPORT or SHARED definition must exactly match.

Within amodule (directory or folder on disk), you may have asmany EXPORT and/or SHARED definitions as heeded.
An IMPORT statement (see the IMPORT keyword) identifies any other modules whose visible definitions will be
available for usein the current definition.

The following fundamental definition visibility scopes are availablein ECL: " Global," Module, and L ocal.

"Global"

Definitions defined as EXPORT (seethe EXPORT keyword) are available throughout the module in which they are
defined, and throughout any other module that IMPORTSs that module (see the IMPORT keyword).

/linside the Definitionl.ecl file (in AnotherMdul e folder) you have:
EXPORT Definitionl := 5;

/| EXPORT nmakes Definitionl avail able to other nodul es and

//al so avail abl e t hroughout its own nodul e

Module

The scope of the definitions defined as SHARED (see the SHARED keyword) is limited to that one module, and are
available throughout the module (unlike local definitions). This allows you to keep private any definitions that are
only needed to implement internal functionality. SHARED definitions are used to support EXPORT definitions.

/linside the Definition2.ecl file you have:
| MPORT Anot her Modul e;
/I makes definitions from Anot her Modul e avail able to this code, as needed

SHARED Definition2 : = Anot her Modul e. Definitionl + 5;
//Definition2 avail abl e throughout its own nodul e, only

//***

//then inside the Definition3.ecl file (in the same fol der as Definition2) you have:
| MPORT $;
// makes definitions fromthe current nodul e available to this code, as needed

EXPORT Definition3 := $.Definition2 + 5;
// make Definition3 avail able to other nodul es and
//al so avail abl e t hroughout its own nodul e

Local

A definition without either the EXPORT or SHARED keywords is available only to subsequent definitions, until the
end of the next EXPORT or SHARED definition. This makes them private definitions used only within the scope of
that one EXPORT or SHARED definition, which allows you to keep private any definitions that are only needed to
implement internal functionality. Local definitionsdefinitions are used to support the EXPORT or SHARED definition
in whose file they reside. Local definitions are referenced by their definition name alone; no qualification is needed.

//then inside the Definitiond.ecl file (in the sane folder as Definition2) you have:
| MPORT $;
// makes definitions fromthe current nodule available to this code, as needed

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
25

ECL Language Reference
ECL Basics

Local Def := 5;
//1ocal -- available through the end of Definition4's definition, only

EXPORT Definition4 := Local Def + 5;
/| EXPORT term nates scope for Local Def

Local Def2 : = Definition4 + Local Def;
/11 NVALI D SYNTAX -- Local Def is out of scope here
//and any |l ocal definitions follow ng the EXPORT
//or SHARED definition in the file are meaningl ess
//since they can never be used by anything

TheLOCAL keywordisvalid for usewithin any nested structure, but most useful withinaFUNCTIONMACRO struc-
ture to clearly identify that the scope of adefinition islimited to the code generated within the FUNCTIONMACRO.

AddOne(nun) : = FUNCTI ONMACRO
LOCAL nunPlus := num + 1;
RETURN nunPl us;

ENDVACRO,

nunPlus := "this is a syntax error without LOCAL in the FUNCTI ONVACRO ;
nunPl us;
AddOne(5) ;

See Also: IMPORT, EXPORT, SHARED, MODULE, FUNCTIONMACRO

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
26

ECL Language Reference
ECL Basics

Field and Definition Qualification

Imported Definitions

EXPORTed definitions defined within another module and IMPORTed (see the EXPORT and IMPORT keywords)
are available for use in the definition that contains the IMPORT. Imported Definitions must be fully qualified by their
Module name and Definition name, using dot syntax (module.definition).

| MPORT abc; //make all exported definitions in the abc nodul e avail abl e
EXPORT Definitionl :=5; //make Definitionl available to other nodul es
Definition2 := abc.Definition2 + Definitioni;

/'l object qualification needed for Definitions fromabc nodul e

Fields in Datasets

Each Dataset counts as a qualified scope and the fields within them are fully qualified by their Dataset (or record set)
name and Field name, using dot syntax (dataset.field). Similarly, the result set of the TABLE built-in function (see the
TABLE keyword) also actsasaqualified scope. The name of the record set to which afield belongsisthe object name:

Young :
MySet :

Year Of (Person. per _dbrth) < 1950;
Per son(Young) ;

When naming a Dataset as part of a definition, the fields of that Definition (or record set) come into scope. If Para-
meterized Definitions (functions) are nested, only the innermost scope is available. That is, al the fields of a Dataset
(or derived record set) are in scope in the filter expression. Thisis also true for expressions parameters of any built-
in function that names a Dataset or derived record set as a parameter.

MySet 1 : = Person(YearOf (dbrth) < 1950);
/1 MySetl is the set of Person records who were born before 1950

MySet 2 : = Per son(EXI STS(OpenTr ades(AgeXf (trd_dla) < AgeOf (Person. per _dbrth))));

/1l OpenTrades is a pre-defined record set.

/IAll Trades fields are in scope in the OpenTrades record set filter
|l expression, but Person is required here to bring Person.per_dbrth
/1 into scope

/1 Thi s exanpl e conpares each trades' Date of Last Activity to the
/'l related person's Date O Birth

Any field in aRecord Set can be qualified with either the Dataset name the Record Set is based on, or any other Record
Set name based on the same base dataset. For example:

mentrade. trd_dr pt
nondup_trades. trd_dr pt
trades. trd_drpt

al refer to the same field in the memtrade dataset.

For consistency, you should typically use the base dataset name for qualification. Y ou can aso use the current Record
Set's name in any context where the base dataset name would be confusing.

Scope Resolution Operator

Identifiers are looked up in the following order:

1. The currently active dataset, if any

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
27

ECL Language Reference
ECL Basics

2. The current definition being defined, and any parametersit is based on
3. Any definitions or parameters of any MODULE or FUNCTION structure that contains the current definition

This might mean that the definition or parameter you want to accessisn't picked becauseit is hidden asin a parameter
or private definition name clashing with the name of a dataset field.

It would be better to rename the parameter or private definition so the name clash cannot occur, but sometimes this
isnot possible.

Y ou may direct access to a different match by qualifying the field name with the scope resol ution operator (the carat
(™) character), using it once for each step in the order listed above that you need to skip.

This example shows the qualification order necessary to reach a specific definition/parameter:
ds := DATASET([1], { | NTEGER SoneVal ue });
| NTEGER SoneVal ue := 10; //local definition
myModul e(| NTEGER SoneVal ue) : = MODULE
EXPORT anot her Functi on(| NTEGER SoneVal ue) : = FUNCTI ON
tbl := TABLE(ds, { SUM GROUP, soneValue), // 1 - DATASET field
SUM GROUP, ~.soneValue), // 84 - FUNCTI ON par anet er

SUM GROUP, ~~.soneValue), // 42 - MODULE par anet er
SUM GROUP, ~AA soneValue), // 10 - local definition

0});
RETURN t bl :
END;

EXPORT result := anotherFunction(84);
END;

OQUTPUT(nyModul e(42) .resul t);

In this example there are four instances of the name "SomeValue":
afieddinaDATASET.

alocal definition

aparameter to aMODULE structure

aparameter to a FUNCTION structure

The code in the TABLE function shows how to reference each separate instance.

Whilethissyntax allows exceptionswhere you need it, creating another definition with adifferent nameisthe preferred
solution.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
28

ECL Language Reference
ECL Basics

Actions and Definitions

While Definitions define expressions that may be evaluated, Actions trigger execution of a workunit that produces
results that may be viewed. An Action may evaluate Definitions to produce its result. There are a number of built-in
Actionsin ECL (such as OUTPUT), and any expression (without a Definition name) isimplicitly treated as an Action
to produce the result of the expression.

Expressions as Actions

Fundamentally, any expression in can be treated as an Action. For example,

Attrl : = COUNT(Trades);
Attr2 := MAX(Trades,trd_bal);
Attr3 := IF (1 =0, 'A, 'B);

are al definitions, but without a definition name, they are simply expressions
COUNT(Tr ades) ; I execut e these expressions as Actions
MAX(Tr ades, trd_bal) ;

I F (1 = O, ll Al , ' Bl);

that are treated as actions, and as such, can directly generate result values by simply submitting them as queries to the
supercomputer. Basically, any ECL expression can be used as an Action to instigate a workunit.

Definitions as Actions

These same expression definitions can be executed by submitting the names of the Definitions as queries, like this:
Attrl; //These all generate the same result val ues

Attr2; // as the previ ous exanpl es
Attr3;

Actions as Definitions

Conversely, by ssimply giving any Action a Definition name it becomes a definition, therefore no longer a directly
executable action. For example,

QUTPUT(Per son) ;
isan action, but
Attr4 : = OUTPUT(Person);

isadefinition and does not immediately execute when submitted as part of a query. To execute the action inherent in
the definition, you must execute the Definition name you've given to the Action, like this:

Attr4; /1 run the previously defined OUTPUT(Person) action

Debugging Uses

This technique of directly executing a Definition as an Action is useful when debugging complex ECL code. You
can send the Definition as a query to determine if intermediate values are correctly calculated before continuing on
with more complex code.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
29

ECL Language Reference
Expressions and Operators

Expressions and Operators
Expressions and Operators

Expressions are evaluated | eft-to-right and from the inside out (in nested functions). Parentheses may be used to alter
the default evaluation order of precedence for al operators.

Arithmetic Operators

Standard arithmetic operators are supported for use in expressions, listed here in their evaluation precedence.

Note: *,/, %, and DIV dl have the same precedence and are left associative. + and - have the same precedence
and are left associdtive.

Division /
Integer Division DIV
Modulus Division %
Multiplication *
Addition +
Subtraction -

Division by zero defaults to generating a zero result (0), rather than reporting a "divide by zero" error. This avoids
invalid or unexpected data aborting along job. The default behaviour can be changed using

#OPTI ON (' di vi deByZero', 'zero'); //evaluate to zero

The divideByZero option can have the following values:

‘zero' Evaluate to O - the default behaviour.
‘fal' Stop and report adivision by zero error.

Thisisonly currently supported for real numbers. Division by zero
creates a quiet NaN, which will propagate through any real expres-
sionsitisusedin. You can use NOT ISVALID(x) to test if the val-
ueisaNaN. Integer and decimal division by zero continue to re-
turn O.

nan'

Bitwise Operators

Bitwise operators are supported for use in expressions, listed here in their evaluation precedence:

Bitwise AND &
Bitwise OR |
Bitwise Exclusive OR A
Bitwise NOT BNOT

Bitshift Operators

Bitshift operators are supported for use in integer expressions:

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
30

ECL Language Reference
Expressions and Operators

Bitshift Right >>
Bitshift Left <<

Comparison Operators

The following comparison operators are supported:

Equivalence = returns TRUE or FALSE.
Not Equal <> returns TRUE or FALSE
Not Equal I= returns TRUE or FALSE
Less Than < returns TRUE or FALSE
Greater Than > returns TRUE or FALSE
Less Than or Equal <= returns TRUE or FALSE
Greater Than or Equal >= returns TRUE or FALSE
Equivalence Comparison <=> returns-1, 0, or 1

The Greater Than or Equal operator must have the Greater Than (>) sign first. For the expression a<=> b, the Equiv-
alence Comparison operator returns -1 if a<b, 0 if a=b, and 1 if a>b. When STRINGs are compared for equivalence,
trailing spaces are ignored.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
31

ECL Language Reference
Expressions and Operators

Logical Operators

The following logical operators are supported, listed here in their evaluation precedence:

NOT Boolean NOT operation
~ Boolean NOT operation
AND Boolean AND operation
OR Boolean OR operation

Logical Expression Grouping

When a complex logical expression has multiple OR conditions, you should group the OR conditions and order them
from least complex to most complex to result in the most efficient processing.

If the probability of occurrence is known, you should order them from the most likely to occur to the least likely to
occur, because once any part of acompound OR condition evaluatesto TRUE, the remainder of the expression can be
bypassed. However, thisis not guaranteed. Thisis aso true of the order of MAP function conditions.

Whenever AND and OR logical operations are mixed in the same expression, you should use parentheses to group
within the expression to ensure correct evaluation and to clarify the intent of the expression. For example consider
the following:

isCurrent Revolv : = trades.trd_type D
trades.trd rate

AN
(O3
trades.trd_rate ;

o
ko

does not produce the intended result. Use of parentheses ensures correct evaluation, as shown below:

isCurrentRevolv : = trades.trd_type = 'R AND
(trades.trd_rate = '0' OR trades.trd_rate = "'1");

An XOR Operator

The following function can be used to perform an XOR operation on 2 Boolean values:

BOOLEAN XOR(BOOLEAN condl, BOOLEAN cond2) : =
(condl OR cond2) AND NOT (condl AND cond2);

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
32

ECL Language Reference
Expressions and Operators

Record Set Operators

The following record set operators are supported (al require that the files were created using identical RECORD
structures):

+ Append all records from both files, independent of any order

Append al records from both files, maintaining record order on each node

- Subtract records from afile

Example:

M/Layout := RECORD
UNSI GNED Num
STRI NG Number ;

END;

FirstRecSet := DATASET([{1, "ONE'}, {2, 'Two'}, {3, 'Three'}, {4, 'Four'}], MyLayout);
SecondRecSet := DATASET([{5, 'FIVE}, {6, 'SIX}, {7, '"SEVEN}, {8, "EIGHT'}], MLayout);

Excl udeThese : = SecondRecSet (Num > 6);

Whol eRecSet :
Resul t Set

First RecSet + SecondRecSet ;
Whol eRecSet - Excl udeThese;

QUTPUT (Whol eRecSet) ;
OUTPUT(Resul t Set) ;

Prefix Append Operator

(+) (ds_list) [, options])

(+) The prefix append operator.

ds list A comma-delimited list of record setsto append (two or more). All the record sets must have
identical RECORD structures.

options Optional. A comma-delimited list of options from the list below.

The prefix append operator (+) provides more flexibility than the simple infix operators described above. It allows
hints and other options to be associated with the operator. Similar syntax will be added in a future change for other
infix operators.

The following options may be used:

[, UNORDERED | ORDERED(bool)] [, STABLE |UNSTABLE] [, PARALLEL [(numthreads)]] [, ALGO-
RITHM(name)]

UNORDERED Optional. Specifies the output record order is not significant.

ORDERED Specifies the significance of the output record order.

bool When False, specifies the output record order is not significant. When True, specifies the
default output record order.

STABLE Optional. Specifies the input record order is significant.

UNSTABLE Optional. Specifies the input record order is not significant.

PARALLEL Optional. Try to evaluate this activity in parallel.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
33

ECL Language Reference
Expressions and Operators

numthreads Optional. Try to evaluate this activity using numthreads threads.

ALGORITHM Optional. Override the algorithm used for this activity.

name The algorithm to use for this activity. Must be from the list of supported algorithms for the
SORT function's STABLE and UNSTABLE options.

Example:

ds_1 := (+)(dsl, ds2, UNORDERED);
//equivalent to: ds := dsl + ds2

ds_2 := (+)(dsl, ds2);
//equivalent to: ds := dsl & ds2

ds_3 := (+)(dsl, ds2, ds3);
[/multiple file appends are supported

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
34

ECL Language Reference
Expressions and Operators

Set Operators

The following set operators are supported, listed here in their evaluation precedence:

‘+ ‘Append (all elements from both sets, without re-ordering or duplicate element removal)

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
35

ECL Language Reference
Expressions and Operators

String Operators

The following string operator is supported:

‘ + ‘ Concatenation

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
36

ECL Language Reference
Expressions and Operators

IN Operator

value IN value_set

value The valueto find in the value_set. Thisis usually a single value, but if the value set
isaDICTIONARY with a multiple-component key, this may also be a ROW.
value_set A set of values. This may be a set expression, the SET function, or aDICTIONARY.

The IN operator is shorthand for a collection of OR conditions. It is an operator that will search a set to find an
inclusion, resulting in a Boolean return. Using IN is much more efficient than the equivalent OR expression.

Example:

ABCset :=['A, 'B', 'C];
| SABCSt at us : = Person. Status I N ABCset ;
/1 This code is directly equival ent to:

/1 |sABCStatus := Person. Status = 'A" OR
/1 Person. Status = 'B" OR
/1 Person. Status = 'C ;

I SABC(STRI NGL char) := char I N ABCset;

Trades_ABCstat := Trades(lsABC(rate));
/1 Trades_ABCstat is a record set definition of all those
/! trades with a trade status of A B, or C

/1 SET function exanpl es
r := {STRINGL Letter};

SoneFile := DATASET([{'A},{'B'},{'C},.{'D},{'E},
UFLUGHL{UHYLU UYL {).n);
X := SET(SoneFile(Letter > 'C), Letter);
y :="A INx; //results in FALSE
z:='D INXx; //results in TRUE
/1 DI CTlI ONARY exanpl es:
rec : = {STRI NG col or, UNS| GNED1 code};
Col or Codes := DATASET([{'Black' ,0 },
{'Brown" ,1 1},
{'Red" 21},
{"Wite" ,31}], rec);
CodeCol or DCT : = DI CTI ONARY(Col or Codes, { Code => Col or});
QUTPUT(6 | N CodeCol or DCT) ; //fal se

Col or CodesDCT : = DI CTlI ONARY(Col or Codes, { Col or, Code}) ;
OUTPUT(RON{' Red' , 2}, rec) | N Col or CodesDCT) ;

See Also: Basic Definition Types, Definition Types (Set Definitions), Logical Operators, PATTERN, DICTIONARY,
ROW, SET, Sets and Filters, SET OF, Set Operators

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
37

ECL Language Reference
Expressions and Operators

BETWEEN Operator

Seekval BETWEEN LoVal AND HiVal

SeekVal The value to find in the inclusive range.
Loval Thelow value in the inclusive range.
Hival The high value in the inclusive range.

The BETWEEN operator is shorthand for an inclusive range check using standard comparison operators (SeekVal >=
LoVal AND SeekVal <= HiVal). It may be combined with NOT to reverse the logic.

Example:
X := 10;
Y : = 20;
Z = 15;

I slnRange := Z BETWEEN X AND Y,
//This code is directly equival ent to:
/] IslnRange := Z >= X AND Z <= Y;

I sNot | nRange : = Z NOT BETWEEN X AND Y;
//This code is directly equival ent to:
/1 1slnNotRange := NOT (Z >= X AND Z <= Y);

See Also: Logical Operators, Comparison Operators

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
38

ECL Language Reference
Value Types

Value Types

Value types declare an Attribute's type when placed left of the Attribute name in the definition. They also declare a
passed parameter's type when placed left of the parameter name in the definition. Value types also explicitly cast from
type to another when placed in parentheses left of the expression to cast.

BOOLEAN

BOOLEAN

A Boolean trueffalse value. TRUE and FAL SE are reserved ECL keywords; they are Boolean constants that may be
used to compare against a BOOLEAN type. When BOOLEAN is used in a RECORD structure, a single-byte integer
containing one (1) or zero (0) is output.

Example:

BOOLEAN MyBool ean : = SoneAttri bute > 10;
/'l decl ares MyBool ean a BOOLEAN Attri bute

BOOLEAN MyBool ean(| NTEGER p) := p > 10;
/| MyBool ean takes an | NTEGER par anet er

BOOLEAN Typtrd := trades.trd_type = 'R ;
/I Typtrd is a Boolean attribute, likely to be used as a filter

See Also: TRUE/FALSE

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
39

ECL Language Reference
Value Types

INTEGER

[IntType] [UNSIGNED] INTEGER][]

[IntType] UNSIGNEDnN

An n-byte integer value. Valid values for n are: 1, 2, 3, 4, 5, 6, 7,0r 8. If n is not specified for the INTEGER, the
default is 8-bytes.

The optional IntType may specify either the BIG_ENDIAN (Sun/UNIX-type, valid only inside a RECORD structure)
or LITTLE _ENDIAN (Intel-type) style of integers. These two IntTypes have opposite internal byte orders. If the
IntTypeismissing, theinteger isLITTLE_ENDIAN.

If the optional UNSIGNED keyword ismissing, theinteger issigned. Unsigned integer declarations may be contracted
to UNSIGNEDnN instead of UNSIGNED INTEGERN.

INTEGER Value Ranges

Size Signed Values Unsigned Values

1-byte -128to 127 0to 255

2-byte -32,768 to 32,767 0to 65,535

3-byte -8,388,608 to 8,388,607 0to 16,777,215

4-byte -2,147,483,648 to 2,147,483,647 010 4,294,967,295

5-byte -549,755,813,888 to 549,755,813,887 | 0 to 1,099,511,627,775

6-byte -140,737,488,355,328 to|0to 281,474,976,710,655
140,737,488,355,327

7-byte -36,028,797,018,963,968 to|0to 72,057,594,037,927,935
36,028,797,018,963,967

8-byte -9,223,372,036,854,775,808 to|0 to 18,446,744,073,709,551,615
9,223,372,036,854,775,807

Example:

I NTEGERL MyVal ue := MAP(MyString = '1' => MyString, '0');
/I MyValue is 1 or 0, changing type fromstring to integer
UNSI GNED | NTEGERL MyVal ue : = 255; //max value possible in 1 byte
UNSI GNED1 MyVal ue : = 255;
/I MyVal ue contains the max val ue possible in a single byte
M/Rec : = RECORD
LI TTLE_ENDI AN | NTEGER2 MyLittl eEndi anVal ue : = 1;
Bl G_ENDI AN | NTEGER2 MyBi gEndi anVal ue : = 1;
//the physical byte-order is opposite in these two
END

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
40

ECL Language Reference
Value Types

REAL

REAL[n]

An n-byte standard | EEE floating point value. Valid values for n are: 4 (valuesto 7 significant digits) or 8 (valuesto
15 significant digits). If nisomitted, REAL is adouble-precision floating-point value (8-bytes).

REAL Value Ranges

Type Significant Digits Largest Value Smallest Value
Type Significant Digits Largest Val ue Smal | est Val ue

REAL4 7 (9999999) 3. 402823e+038 1.175494e- 038
REAL8 15 (999999999999999) 1. 797693e+308 2.225074e-308

Example:

REAL4 MyVal ue := MAP(MyString = '1.0' => MyString, '0');
/'l MyVal ue becones either 1.0 or 0O

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
41

ECL Language Reference
Value Types

DECIMAL

[UNSIGNED] DECIMALN[_y]

UDECIMALN[_y]

A packed decimal value of n total digits. If the _y value is present, the y defines the number of decimal placesin the
value. There can be at most 32 leading digits and 32 fractional digits.

If the UNSIGNED keyword is omitted, the rightmost nibble holds the sign. Unsigned decimal declarations may be
contracted to use the optional UDECIMALnN syntax instead of UNSIGNED DECIMALN.

Using exclusively DECIMAL values in computations invokes the Binary Coded Decimal (BCD) math libraries
(base-10 math), allowing up to 32-digits of precision (which may be on either side of the decimal point).

Example:

DECI MAL5_2 MyDeci nal := 123. 45;
//five total digits with two deci mal pl aces

Qut put For mat 199 : = RECORD
UNSI GNED DECI MAL9 Per son. SSN;
[/ 'unsi gned packed decimal containing 9 digits,
/'l occupying 5 bytes in a flat file

UDECI MAL10 Per son. phone;
/'unsi gned packed deci mal containing 10 digits,
/'l occupying 5 bytes in a flat file

END,;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
42

ECL Language Reference
Value Types

STRING

[SringType] STRINGIN]

A character string of n bytes, space padded (not null-terminated). If n is omitted, the string is variable length to the
size needed to contain the result of the cast or passed parameter. Y ou may use set indexing into any string to parse
out a substring.

The optional SringType may specify ASCII or EBCDIC. If the SringType is missing, the datais in ASCII format.
Defining an EBCDIC STRING Attribute as a string constant value implies an ASCII to EBCDIC conversion. How-
ever, defining an EBCDIC STRING Attribute as a hexadecimal string constant value implies no conversion, as the
programmer is assumed to have supplied the correct hexadecimal EBCDIC value.

The upper size limit for any STRING value is 4GB.

Example:

STRINGL MyString := | F(SoneAttribute > 10,'1','0');
/| declares MyString a 1-byte ASCI| string

EBCDI C STRING3 MyStringl := 'ABC ;
/linmplicit ASCI|I to EBCDI C conversion

EBCDI C STRING3 MyString2 : = x' 616263 ;
/1 NO conversi on here

See Also: LENGTH, TRIM, Set Ordering and Indexing, Hexadecimal String

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
43

ECL Language Reference
Value Types

QSTRING

QSTRINGI[n]

A data-compressed variation of STRING that uses only 6-bits per character to reduce storage requirements for large
strings. The character set is limited to capital letters A-Z, the numbers 0-9, the blank space, and the following set of
special characters:

P " #$%&" () *+, - ./ ;<=>?2@[\]"_

If nisomitted, the QSTRING is variable length to the size needed to contain the result of a cast or passed parameter.
Y ou may use set indexing into any QSTRING to parse out a substring.

The upper size limit for any QSTRING value is 4GB.

Example:

QSTRI NGL2 ConpanyName : = ' LEXI SNEXI S' ;
/] uses only 9 bytes of storage instead of 12

See Also: STRING, LENGTH, TRIM, Set Ordering and Indexing.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
44

ECL Language Reference
Value Types

UNICODE

UNICODE[_local€][n]

A UTF-16 encoded unicode character string of n characters, space-padded just as STRING is. If nisomitted, the string
isvariable length to the size needed to contain the result of the cast or passed parameter. The optional local e specifies
avalid unicode locale code, as specified in SO standards 639 and 3166 (not needed if LOCALE is specified on the
RECORD structure containing the field definition).

Type casting UNICODE to VARUNICODE, STRING, or DATA isalowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

The upper size limit for any UNICODE vaue is 4GB.

Example:

UNI CODE16 MyYUNI String := U 1234567890ABCDEF" ;
/] utf-16-encoded string
UNI CODE4 MyUni codeString : = U abcd';
/] same as: (UNI CODE)' abcd'
UNI CODE_de5 MyUni codeString : = U abcd\ 353" ;
/| becomes 'abcdé' with a CGerman |ocale
UNI CODE_de5 MyUni codeString : = U abcdé';
/| same as previous exanple

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
45

ECL Language Reference
Value Types

UTF8

UTF8[_local€]

A UTF-8 encoded unicode character string of variable length to the size needed to contain the result of the cast or
passed parameter. The optional locale specifies a valid unicode locale code, as specified in 1SO standards 639 and
3166 (not needed if LOCALE is specified on the RECORD structure containing the field definition).

Type casting UTF8 to UNICODE, VARUNICODE, STRING, or DATA is allowed, while casting to any other type
will first implicitly cast to STRING and then cast to the target value type.

The upper size limit for any UTF8 value is 4GB.

Example:

UTF8 FirstNanme := U8' Noe#l ' ;
/] utf-8-encoded string
UTF8_de MyUni codeString : = U8' abcd\ 353" ;
/1 becones 'abcdé' with a German | ocal e

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
46

ECL Language Reference
Value Types

DATA

DATA[N]

A "packed hexadecimal" data block of n bytes, zero padded (not space-padded). If nis omitted, the DATA isvariable
length to the size needed to contain the result of the cast or passed parameter. Type casting is allowed but only to a
STRING or UNICODE of the same number of bytes.

Thistypeis particularly useful for containing BLOB (Binary Large OBject) data. See the Programmer’'s Guide article
Working with BLOBs for more information on this subject.

The upper size limit for any DATA valueis 4GB.

Example:

DATA8 MyHexString : = x' 1234567890ABCDEF" ;
/1 an 8-byte data block - hex values 12 34 56 78 90 AB CD EF

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
47

ECL Language Reference
Value Types

VARSTRING

VARSTRING[n]

A null-terminated character string containing n bytes of data. If n is omitted, the string is variable length to the size
needed to contain the result of the cast or passed parameter. You may use set indexing into any string to parse out
asubstring.

The upper size limit for any VARSTRING value is 4GB.

Example:

VARSTRI NG3 MyString := 'ABC ;
/'l declares MyString a 3-byte null-term nated string

See Also: LENGTH, TRIM, Set Ordering and Indexing

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
48

ECL Language Reference
Value Types

VARUNICODE

VARUNICODE[_locale][n]

A UTF-16 encoded Unicode character string of n characters, null terminated (not space-padded). The n may be omitted
only when used as a parameter type. The optional locale specifies a valid Unicode locale code, as specified in 1SO
standards 639 and 3166 (not needed if LOCALE is specified on the RECORD structure containing thefield definition).

Type casting VARUNICODE to UNICODE, STRING, or DATA isalowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

The upper size limit for any VARUNICODE value is 4GB.

Example:

VARUNI CODE16 MyUNI String : = U 1234567890ABCDEF' ;
/] utf-16-encoded string
VARUNI CODE4 MyUni codeString : = U abcd';
/] same as: (UNI CODE)' abcd'
VARUNI CODE5 MyUni codeString : = U abcd\ 353" ;
/| becomes 'abcdé'
VARUNI CODE5 MyUni codeString : = U abcdé';
/| same as previous exanple

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
49

ECL Language Reference

Value Types
SET [OF type]
type The value type of the data in the set. Valid vaue types are: INTEGER, REAL,

BOOLEAN, STRING, UNICODE, DATA, or DATASET (recstruct). If omitted, the
type is INTEGER.

The SET OF value type defines Attributes that are a set of data elements. All elements of the set must be of the same
value type. The default value for SET OF when used to define a passed parameter may be a defined set, the keyword
ALL to indicate all possible values for that type of set, or empty square brackets ([]) to indicate no possible value
for that type of set.

Example:

SET OF I NTEGERL SetlntOnes :=[1,2,3,4,5];

SET OF STRINGL SetStrOnes :=["1','2","3","4",'5"];

SET OF STRINGL SetStrOnel := (SET OF STRINGL) Set | nt Ones;
//type casting sets is allowed

r := {STRING F1, STRIN& F2};

SET OF DATASET(r) SetDS := [dsl, ds2, ds3];

StringSet Func(SET OF STRI NG passedset) := AstringVal ue I N passedset;
/la set of string constants will be passed to this function
HasNar Code(SET s) := Trades.trd_narrl INs OR Trades.trd_narr2 IN s;
/| HasNar Code takes a paraneter that specifies the set of valid
/1 Narrative Code values (all |NTEGERs)
SET OF | NTEGERL Set d sdNar : = [65, 66, 90, 114, 115, 123] ;
Nar CodeTr ades : = Trades(HasNar Code(Set Cl sdNar)) ;
/1 Usi ng HasNar Code(Set Cl sdNar) is equival ent to:
/1 Trades.trd_narrl IN [65, 66, 90, 114, 115, 123] OR
/1 Trades.trd_narr2 IN [65, 66, 90, 114, 115, 123]

See Also: Functions (Parameter Passing), Set Ordering and Indexing

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
50

ECL Language Reference

Value Types
TYPEOF(expression)
expression An expression defining the value type. This may be the name of a data field, passed

parameter, function, or Attribute providing the value type (including RECORD struc-
tures). This must be a legal expression for the current scope but is not evaluated for
itsvalue.

TheTY PEOF declaration allowsyou to define an Attribute or parameter whose valuetypeis"just like" the expression.
Itisvalid for use anywhere an explicit value typeisvalid.

Its most typical use would beto specify thereturn type of aTRANSFORM function as"just like" adataset or recordset
structure.

Example:

STRING3 Fred := 'ABC ; //declare Fred as a 3-byte string
TYPEOF(Fred) Sue := Fred; //declare Sue as "just like" Fred

See Also; TRANSFORM Structure

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
51

ECL Language Reference

Value Types
RECORDOF(recordset , [LOOKUP))
recordset The set of data records whose RECORD structure to use. This may be a DATASET
or any derived recordset. If the LOOKUP attribute is used, this may be a filename.
LOOKUP Optional. Specifies that the file layout should be looked up at compile time. See File
Layout Resolution at Compile Time in the Programmer's Guide for more details.

The RECORDOF declaration specifies use of just the record layout of the recordset in those situations where you
need to inherit the structure of the fields but not their default values, such as child DATASET declarations inside
RECORD structures.

This function allows you to keep RECORD structures local to the DATASET whose layout they define and still be
able to reference the structure (only, without default values) where needed.

Example:

Layout Peopl e_Sli m: = RECORD
STD_Peopl e. Recl D
STD _Peopl e. | D;
STD_Peopl e. Fi r st Naneg;
STD_Peopl e. Last Nane;
STD_Peopl e. M ddl eNane;
STD_Peopl e. NameSuf fi x;
STD_Peopl e. Fi | eDat e;
STD_Peopl e. Bur eauCode;
STD_Peopl e. Gender ;
STD_Peopl e. Bi rt hDat €;
STD_Peopl e. St r eet Addr ess;
UNSI GNED8 CSZ_| D

END;

STD _Accounts : = TABLE(U D_Accounts, Layout STD AcctsFile);

Conbi nedRec : = RECORD, MAXLENGTH(100000)
Layout _People_Slim
UNSI GNED1 Chi | dCount ;
DATASET(RECORDOF(STD_Account s)) Chi | dAcct s;
END;
/1 This Chil dAccts definition is equivalent to:
/| DATASET(Layout STD AcctsFile) ChildAccts;
//but doesn't require Layout_ STD AcctsFile to be visible (SHARED or
/| EXPORT)

See Also: DATASET, RECORD Structure

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
52

ECL Language Reference
Value Types

ENUM

ENUM([type,] name[=valug] [, name[=valug] ...])

type The numeric value type of the values. If omitted, defaults to UNSIGNEDA4.

name The label of the enumerated value.

value The numeric value to associate with the name. If omitted, the value is the previous
value plus one (1). If all values are omitted, the enumeration starts with one (1).

The ENUM declaration specifies constant values to make code more readable.

Example:

Gender Enum : = ENUM UNSI GNED1, Mal e, Feral e, Ei t her, Unknown) ;
//values are 1, 2, 3, 4

Pfl g : = ENUM None=0, Dead=1, For ei gn=2, Terrori st =4, Want ed=Terrori st *2);
//values are 0, 1, 2, 4, 8
nanesRecord : = RECORD
STRI N&0 sur nane;
STRI NGLO f or enane;
Gender Enum gender ;
| NTEGER2 age := 25;
END;

nanesTabl e2 : = DATASET([{' Foreman', ' George', Gender Enum Mal e, Pf| g. For ei gn},
{'Bin',' O, Gender Enum Mal e, Pf| g. Forei gn+Pfl g. Terrori st +Pf| g. Want ed}
], nanesRecord);
QUTPUT(nanesTabl e2) ;

myModul e(UNSI GNED4 baseError, STRING x) : = MODULE
EXPORT ErrCode : = ENUM ErrorBase = baseError,
Er r NoAct i veTabl e,
Err NoAct i veSyst em
Err Fat al ,
ErrLast);
EXPORT report X : = FAI L(Err Code. Err NoActi veTabl e,' No ActiveTable in ' + x);
END;

myModul e(100, 'Call1').reportX;
myModul e(300, 'Call2').reportX;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
53

ECL Language Reference
Value Types

Type Casting

Explicit Casting

The most common use of value types is to explicitly cast from one type to another in expressions. To do this, you
simply place the value type to cast to within parentheses. That creates a casting operator. Then place that casting
operator immediately to the left of the expression to cast.

This convertsthe datafromits origina form to the new form (to keep the same bit-pattern, see the TRANSFER built-
in function).

M/Bool ean : = (BOOLEAN) | F(SomeAttribute > 10,1, 0);

// casts the I NTEGER values 1 and O to a BOOLEAN TRUE or FALSE
MyString := (STRINGL) | F(SoneAttribute > 10,1, 0);

// casts the INTEGER values 1 and 0 to a 1-character string

/Il containing '1'" or 'O
MyVal ue : = (I NTEGER) MAP(MyString = '1' => MyString, '0');

/] casts the STRING values '1' and '0' to an INTEGER 1 or O
MySet := (SET OF INTEGERL) [1,2,3,4,5,6,7,8,9,10];

//casts froma SET OF | NTEGER8 (the default) to SET OF | NTEGERL

Implicit Casting

During expression evaluation, different value types may beimplicitly cast in order to properly evaluate the expression.
Implicit casting always means promoting one value type to another: INTEGER to STRING or INTEGER to REAL.
BOOLEAN types may not beinvolved in mixed mode expressions. For example, when eval uating an expression using
both INTEGER and REAL values, the INTEGER is promoted to REAL at the point where the two mix, and the result
isaREAL value.

INTEGER and REAL may be freely mixed in expressions. At the point of contact between them the expression is
treated as REAL. Until that point of contact the expression may be evaluated at INTEGER width. Division on INTE-
GER vaues implicitly promotes both operands to REAL before performing the division.

The following expression: (1+2+3+4)*(1.0*5)

evaluates as: (REAL)((INTEGER)1+(INTEGER)2+(INTEGER)3+(INTEGER)4)* (1.0* (REAL)5)

and: 5/2+4+5 evaluates as. (REAL)5/(REAL)2+(REAL)4+(REAL)S5

while: '5' + 4 evaluates as: 5 + (STRING)4 //concatenation

Comparison operators are treated as any other mixed mode expression. Built-in Functions that take multiple values,

any of which may bereturned (such asMAP or IF), are treated as mixed mode expressions and will return the common
base type. This common type must be reachable by standard implicit conversions.

Type Transfer

Type casting converts data from its original form to the new form. To keep the same bit-pattern you must use either
the TRANSFER built-in function or the type transfer syntax, which is similar to type casting syntax with the addition
of angle brackets (>val uetype<).

I NTEGERLT Mylnt := 65; //MInt is an integer value 65
STRINGL MyVal := (>STRINGI<) Myint; //MVal is "A" (ASCI| 65)

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
54

ECL Language Reference

Value Types

Casting Rules

From To Resultsin

INTEGER STRING ASCII or EBCDIC representation of the value

DECIMAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign

REAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign--may be expressed in scientific notation

UNICODE STRING ASCII or EBCDIC representation with any non-existent characters ap-
pearing as the SUBstitute control code (0x1A in ASCII or Ox3F in
EBCDIC) and any non-valid ASCII or EBCDIC characters appearing
as the substitution codepoint (OxFFFD)

UTF8 STRING ASCII or EBCDIC representation with any non-existent characters ap-
pearing as the SUBstitute control code (0x1A in ASCII or Ox3F in
EBCDIC) and any non-valid ASCII or EBCDIC characters appearing
as the substitution codepoint (OxFFFD)

STRING QSTRING Uppercase ASCI| representation

INTEGER UNICODE UNICODE representation of the value

DECIMAL UNICODE UNICODE representation of the value, including decimal and sign

REAL UNICODE UNICODE representation of the value, including decimal and sign--
may be expressed in scientific notation

INTEGER UTF8 UTF8 representation of the value

DECIMAL UTF8 UTF8 representation of the value, including decimal and sign

REAL UTF8 UTRF8 representation of the value, including decimal and sign--may be
expressed in scientific notation

INTEGER REAL Value is cast with loss of precision when the value is greater than 15
significant digits

INTEGER REAL4 Value is cast with loss of precision when the value is greater than 7
significant digits

STRING REAL Sign, integer, and decimal portion of the string value

DECIMAL REAL Value is cast with loss of precision when the value is greater than 15
significant digits

DECIMAL REAL4 Value is cast with loss of precision when the value is greater than 7
significant digits

INTEGER DECIMAL Loss of precision if the DECIMAL istoo small

REAL DECIMAL Loss of precision if the DECIMAL istoo small

STRING DECIMAL Sign, integer, and decimal portion of the string value

STRING INTEGER Sign and integer portions of the string value

REAL INTEGER Integer value, only--decimal portion is truncated

DECIMAL INTEGER Integer value, only--decimal portion is truncated

INTEGER BOOLEAN 0= FALSE, anything else = TRUE

BOOLEAN INTEGER FALSE=0,TRUE=1

STRING BOOLEAN "= FALSE, anything else = TRUE

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

55

ECL Language Reference

Value Types

BOOLEAN STRING FALSE=", TRUE="1

DATA STRING Valueis cast with no trandation
STRING DATA Vaueis cast with no trandation
DATA UNICODE Valueis cast with no trandation
UNICODE DATA Valueis cast with no trandation
DATA UTF8 Valueis cast with no trandation
UTF8 DATA Vaueis cast with no trandation
UTF8 UNICODE Valueis cast with no trandation
UNICODE UTF8 Valueis cast with no trandation

The casting rules for STRING to and from any numeric type apply equally to all string types, also. All casting rules
apply equally to sets (using the SET OF type syntax).

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
56

ECL Language Reference
Record Structures and Files

Record Structures and Files

RECORD Structure

attr := RECORD [(baserec)] [, MAXLENGTH(length)] [, LOCALE(locale)][, PACKED]

fields;

[IFBLOCK(condition)

fields;

END;]

[=> payload]

END;

attr The name of the RECORD structure for later use in other definitions.

baserec Optional. The name of a RECORD structure from which to inherit al fields. Any
RECORD structure that inherits the baserecfieldsin this manner becomes compatible
with any TRANSFORM function defined to take a parameter of baserec type (theextra
fields will, of course, be lost).

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-
form versions prior to 3.0. Specifies the maximum number of charactersallowed in the
RECORD structure or field. MAXLENGTH on the RECORD structure overrides any
MAXLENGTH on afield definition, which overrides any MAXLENGTH specified
in the TYPE structure if the datatype names an aien data type. This option defines
the maximum size of variable-length records. If omitted, fixed size records use the
minimum size required and variable length records produce a warning. The default
maximum size of a record containing variable-length fields is 4096 bytes (this may
be overridden by using #OPTION(maxLength ###) to change the default). The max-
imum record size should be set as conservatively as possible, and is better set on a per-
field basis (see the Field M odifier s section below).

length An integer constant specifying the maximum number of characters allowed.

LOCALE Optional. Specifies the Unicode locale for any UNICODE fields.

locale A string constant containing a valid locale code, as specified in 1SO standards 639
and 3166.

PACKED Optional. Specifiesthe order of the fields may be changed to improve efficiency (such
as moving variable-length fields after the fixed-length fields)..

fields Field declarations. See below for the appropriate syntaxes.

IFBLOCK Optional. A block of fieldsthat receive "live" dataonly if the condition ismet. The IF-
BLOCK must beterminated by an END. Thisisused to define variable-length records.
If the condition expression referencesfieldsin the RECORD preceding the IFBLOCK,
those references must use SELF. prepended to the fieldname to disambiguate the ref-
erence.

condition A logical expression that defines when the fields within the IFBLOCK receive "live"

data. If the expression is not true, the fields receive their declared default values. If
there's no default value, the fields receive blanks or zeros.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

57

ECL Language Reference
Record Structures and Files

= Optional. The delimiter between the list of key fields and the payload when the
RECORD structure is used by the DICTIONARY declaration. Typically, thisis an
inline structure using curly braces ({ }) instead of RECORD and END.

payload Thelist of non-keyed fieldsin the DICTIONARY .

Record layouts are definitions whose expression is a RECORD structure terminated by the END keyword. The attr
name creates a user-defined val ue type that can be used in built-in functions and TRANSFORM function definitions.
The delimiter between field definitions in a RECORD structure can be either the semi-colon (;) or acommac(,).

In-line Record Definitions
Curly braces ({}) are lexical equivalents to the keywords RECORD and END that can be used anywhere RECORD
and END are appropriate. Either form (RECORD/END or {}) can be used to create "on-the-fly" record formats within

those functions that require record structures (OUTPUT, TABLE, DATASET etc.), instead of defining the record as
a separate definition.

Field Definitions

All field declarations in a RECORD Structure must use one of the following syntaxes:

datatype identifier [{modifier}] [:= defaultvalue] ;

identifier := defaultvalue;
defaultvalue ;

sourcefield ;

recstruct [identifier | ;

sourcedataset ;

childdataset identifier [{ modifier }];

datatype Thevauetype of the datafield. This may be achild dataset (see DATASET). If omit-
ted, the value type is the result type of the defaultvalue expression.

identifier The name of the field. If omitted, the defaultvalue expression defines a column with
no name that may not be referenced in subsequent ECL .

defaultvalue Optional. An expression defining the source of the data (for operations that require
a data source, such as TABLE and PARSE). This may be a constant, expression, or
definition providing the value.

modifier Optional. One of the keywords listed in the Field M odifier ssection below.

sourcefield A previously defined datafield, which implicitly providesthe datatype, identifier, and
defaultvalue for the new field--inherited from the sourcefield.

recstruct A previously defined RECORD structure. See the Field I nheritancesection below.

sour cedataset A previously defined DATASET or derived recordset definition. See the Field I nher -
itancesection below.

childdataset A child dataset declaration (see DATASET and DICTIONARY discussions), which

implicitly definesall the fields of the child at their already defined datatype, identifier,
and defaultvalue (if present in the child dataset's RECORD structure).

Field definitions must always define the datatype and identifier of each field, either implicitly or explicitly. If the
RECORD structure will be used by TABLE, PARSE, ROW, or any other function that creates an output recordset,
then the defaultvalue must also be implicitly or explicitly defined for each field. In the case where a field is defined

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
58

ECL Language Reference
Record Structures and Files

interms of afield in adataset already in scope, you may name the identifier with aname already in use in the dataset
already in scope as long as you explicitly define the datatype.

Field Inheritance

Field definitions may be inherited from a previously defined RECORD structure or DATASET. When a recstruct
(a RECORD Structure) is specified from which to inherit the fields, the new fields are implicitly defined using the
datatype and identifier of all the existing field definitionsin the recstruct. When a sourcedataset (a previously defined
DATASET or recordset definition) is specified to inherit the fields, the new fields are implicitly defined using the
datatype, identifier, and defaultvalue of all the fields (making it usable by operations that require a data source, such
as TABLE and PARSE). Either of these forms may optionally have its own identifier to allow reference to the entire
set of inherited fields as a single entity.

You may also use logical operators (AND, OR, and NOT) to include/exclude certain fields from the inheritance, as
described here:

R1 AND R2 Intersection All fields declared in both R1 and R2

R1OR R2 Union All fields declared in either R1 or R2

R1 AND NOT R2 Difference All fieldsin R1 that are not in R2

R1 AND NOT F1 Exception All fieldsin R1 except the specified field (F1)

R1 AND NOT [F1, F2] Exception All fields in R1 except those in listed in the brackets
(FlandF2)

The minus sign (-) isasynonym for AND NOT, so R1-R2 isequivalent to R1 AND NOT R2.

It is an error if the records contain the same field names whose value types don't match, or if you end up with no
fields (such as: A-A). Y ou must ensure that any MAXLENGTH/MAXCOUNT is specified correctly on each field in
both RECORD Structures.

Example:

R1 {STRINGL F1, STRINGL F2, STRINGL F3, STRINGL F4, STRI NGL F5};
{STRINGL F4, STRINGL F5, STRI NGL F6};

{R1L AND R2}; //Intersection - fields F4 and F5 only
{RL OR R2}; //Union - all fields F1 - F6

{R1L AND NOT R2}; //Difference - fields F1 - F3

{RL AND NOT F1}; //Exception - fields F2 - F5

{

R2
R3
R4 :
R5
R6
R7 R1 AND NOT [F1,F2]}; //Exception - fields F3 - F5

//the follow ng two RECORD structures are equi val ent:
C : = RECORD, MAXLENGTH(x)
Rl OR R2;
END;
D : = RECORD, MAXLENGTH(x)

R1L;
R2 AND NOT Ri,;
END,;

Field Modifiers

Thefollowing list of field modifiers are available for use on field definitions:

{ MAXLENGTH(length)}
{ MAXCOUNT(records) }
{ XPATH('tag') }

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
59

ECL Language Reference
Record Structures and Files

{ XMLDEFAULT('value) }

{ DEFAULT(value)}

{ VIRTUAL (fileposition) }

{ VIRTUAL (localfileposition) }

{ VIRTUAL (logicalfilename) }

{BLOB}

{ MAXLENGTH(length) } Specifies the maximum number of characters allowed in the field
(see MAXLENGTH option above).

{ MAXCOUNT ((records) } Specifies the maximum number of records alowed in a child
DATASET field (similar to MAXLENGTH above).

{ XPATH('tag) } Specifies the XML or JSON tag that contains the data, in a
RECORD structure that defines XML or JSON data. This over-
rides the default tag name (the lowercase field identifier). See the
XPATH Support section below for details.

{ XMLDEFAULT(‘value) } Specifies a default XML value for the field. The value must be
constant.

{ DEFAULT(value) } Specifies adefault value for the field. The value must be constant.
This value will be used:

1. When aDICTIONARY lookup returns no match.

2. When an out-of-range record is fetched using dg[n] (asin dg[5]
when ds contains only 4 records).

3. Inthe default records passed to TRANSFORM functionsin non-
INNER JOINS where there is no corresponding row.

4. When defaulting field values in a TRANSFORM using SELF
=[1

{ VIRTUAL (fileposition) } SpecifiesthefieldisaVIRTUAL field containing the relative byte
position of the record within the entire file (the record pointer).
This must be an UNSIGNEDS field and must be the last field, be-
causeit only truly exists when thefileisloaded into memory from
disk (hence, the "virtua").

{ VIRTUAL (localfileposition) } Specifiesthelocal byte position within a part of the distributed file
on a single node: the first bit is set, the next 15 bits specify the
part number, and the last 48 bits specify the relative byte position
within the part. This must be an UNSIGNEDS field and must be
the last field, because it only truly exists when the file is loaded
into memory from disk (hence, the "virtua™).

{ VIRTUAL (logicalfilename) } Specifiesthe logical file name of the distributed file. This must be
aSTRING field. If reading from asuperfile, thevalueisthe current
logical file within the superfile.

{BLOB} Specifies the field is stored separately from the leaf node entry in
the INDEX. Thisis applicable specifically to fields in the payload
of an INDEX to alow more than 32K of data per index entry. The
BLOB datais stored within the index file, but not with the rest of
the record. Accessing the BLOB data requires an additional seek.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
60

ECL Language Reference
Record Structures and Files

XPATH Support

XPATH support isalimited subset of the full XPATH specification, basically expressed as.

node[qualifier] / node[qualifier] ...

node Can contain wildcards.

qualifier Can be a node or attribute, or a simple single expression of equality, inequality, or
numeric or alphanumeric comparisons, or node index values. No functions or inline
arithmetic, etc. are supported. String comparison isindicated when the right hand side
of the expression is quoted.

These operators are valid for comparisons:

An example of a supported xpath:

lal*/c*/*dle[@ttr]/f[child]/g[@ttr="x"]/h[child>="5"]/i[@! ="2"]/]j

Y ou can emulate AND conditions like this:

lalbl@="1"][@="2"]

Also, there is a non-standard XPATH convention for extracting the text of a match using empty angle brackets (<>):

R : = RECORD

STRI NG bl ah{xpat h("' a/ b<>')};

/lcontains all of b, including any child definitions and val ues
END;

An XPATH for avalue cannot be ambiguous. If the element occurs multiple times, you must use the ordinal operation
(for example, /foo[1]/bar) to explicit select the first occurrence.

For XML or JSON DATASETSs reading and processing results of the SOAPCALL function, the following XPATH
syntax is specifically supported:

1) For ssimple scalar value fields, if there is an XPATH specified then it is used, otherwise the lower case identifier
of thefield is used.

STRI NG nane; [/ mat ches: <nanme>Kevi n</ nanme>
STRI NG Fnanme{xpat h(' Fhane')}; //matches: <Fnanme>Kevi n</Fnanme>

2) For afield whosetypeisaRECORD structure, the specified XPATH isprefixed to al thefieldsit contains, otherwise
the lower case identifier of the field followed by /' is prefixed onto the fields it contains. Note that an XPATH of
" (empty single quotes) will prefix nothing.

NanmeRec : = RECORD
STRI NG Fnane{xpat h(' Fnane')}; //matches: <Fname>Kevi n</Fname>
STRI NG Mhare{ xpat h(' Mhane')}; //matches: <Manme>Al f onso</ Mhane>
STRI NG Lnane{xpat h(' Lnane')}; //matches: <Lname>Jones</Lnanme>
END;

Per sonRec : = RECORD
STRI NG Ui d{xpat h(' Person[@I D] ") };
NameRec Nane{xpat h(' Narme')};
/ *mat ches: <Nane>
<Fnane>Kevi n</ Fnane>
<Mhane>Al f onso</ vhane>
<Lnane>Jones</ Lname>

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
61

ECL Language Reference
Record Structures and Files

</ Nane> */
END;

3) For achild DATASET field, the specified XPATH can have one of two formats: " Container/Repeated” or "/Repeat-
ed." Each "/Repeated” tag within the optional Container is iterated to provide the values. If no XPATH is specified,
then the default value for the Container isthe lower case field name, and the default value for Repeated is"Row." For
exampl e, this demonstrates " Container/Repeated"”:

DATASET(Peopl eNanmes) Peopl e{ xpat h(' peopl e/ nane') };
[*mat ches: <peopl e>
<name>Gavi n</ nanme>
<nane>Ri car do</ nane>
</ peopl e> */

This demonstrates "/Repeated":

DATASET(Nanmes) Nanes{xpath('/nane')};
/ *mat ches: <name>Gavi n</ nane>
<name>Ri car do</ nane> */

"Container" and "Repeated”" may also contain xpath filters, like this:

DATASET(doct or Rec) doct or s{xpat h(' person[@ ob=\"doctor\']"')};
[*mat ches: <person job='doctor'>
<FName>Kevi n</ FName>
<LNane>R char ds</ LName>
</ person> */

4) For a SET OF type field, an xpath on a set field can have one of three formats: "Repeated”, " Container/Repeated"
or "Container/Repeated/ @attr". They are processed in asimilar way to datasets, except for the following. If Container
is specified, then the XML reading checks for atag "Container/All", and if present the set contains all possible values.
The third form alows you to read XML attribute values.
SET OF STRI NG peopl €;

// mat ches: <peopl e><Al | / ></ peopl e>

[l or: <peopl e><ltenrKevin</I|tenp<|tenrR chard</I|ten></peopl e>
SET OF STRI NG Npeopl e{xpat h(' Narme') };

/| mat ches: <Nane>Kevi n</ Name><Nane>Ri char d</ Nane>

SET OF STRI NG Xpeopl e{xpat h('/ Name/ @d"')};
// mat ches: <Nane id='"Kevin'/><Name id='Richard' />

For writing XML or JSON files using OUTPUT, the rules are similar with the following exceptions:
* For scalar fields, simple tag names and XML/JSON attributes are supported.

» For SET fields, <All> will only be generated if the container name is specified.

* Xxpath filters are not supported.

» The "Container/Repeated/@attr" form for a SET is not supported.

Example:

For DATASET or the result type of a TRANSFORM function, you need only specify the value type and name of
each field in the layout:

Rl : = RECORD
UNSI GNEDL F1; //only val ue type and nane required
UNSI GNED4A F2;
STRI NGL0O F3;

END;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
62

ECL Language Reference
Record Structures and Files

D1 : = DATASET(' RTTEMP: : SoneFi | e', R1, THOR) ;

For "vertical slice” TABLE, you need to specify the value type, name, and data source for each field in the layout:

R2 : = RECORD
UNSI GNED1 F1 := D1.F1; //value type, nane, data source all explicit
D1.F2; //value type, nane, data source all inplicit

END;

T1 := TABLE(DL, R2);

For "crosstab report” TABLE:

R3 : = RECORD
D1. F1,; /1" group by" fields nust cone first
UNSI GNED4 G pCount : = COUNT(GROUP) ;
//val ue type, columm nanme, and aggregate
G pSum : = SUM GROUP, D1. F2); //no value type -- defaults to | NTEGER
MAX(GROUP, D1. F2); //no col umm nane in out put
END;

T2 := TABLE(DL, R3, F1);

Forml : = RECORD
Person. per _| ast_nane; //field name is per_|ast_nanme - size
/lis as declared in the person dataset
STRI N&5 Local I D : = Person. per_first_nane;
//the name of this field is LocallD and it
/lgets its data from Person. per_first_nane
| NTEGER8 COUNT(Trades); //this field is unnaned in the output file
BOOLEAN HasBogey : = FALSE;
/| HasBogey defaults to false
REAL4 Val u8024;
[/value fromthe Val u8024 definition
END;
FornmR2 : = RECORD
Trades; //include all fields fromthe Trades dataset at their
/'l al ready-defined nanes, types and sizes
UNSI GNED8 f pos {VI RTUAL(fileposition)};
//contains the relative byte position within the file
END;

FormB : = {Trades, UNSI GNED8 | ocal _f pos {VI RTUAL(| ocal fil eposition)}};
/luse of {} instead of RECORD/ END
/1" Trades" includes all fields fromthe dataset at their
/] al ready-defined nanmes, types and sizes
//local _fpos is the relative byte position in each part

Formd : = RECORD, MAXLENGTH(10000)
STRI NG Var St ri ngNane1{ MAXLENGTH(5000) } ;
//this field is variable size to a 5000 byte maxi num

STRI NG Var St ri ngName2{ MAXLENGTH(4000) } ;
//this field is variable size to a 4000 byte nmaxi num

| FBLOCK(MyCondition = TRUE) //followi ng fields receive val ues
/[/only if MyCondition = TRUE

BOOLEAN HaslLife := TRUE;
//defaults to true unless MyCondition = FALSE

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
63

ECL Language Reference
Record Structures and Files

| NTEGER8 COUNT(| nqui ri es);
//this field is zero if M/Condition = FALSE, even
//if there are inquiries to count

END;
END;

in-line record structures, demonstrating same field name use

ds := DATASET('d', { STRINGs; }, THOR);
t := TABLE(ds, { STRINGGO s := ds.s; });
/1l new "s" field is OK with value type explicitly defined

"Child dataset" RECORD structures

Chi | dRec : = RECORD
UNSI GNED4 per son_i d;
STRI N&0 per _sur nane;
STRI N&0 per _f or enane;
END;
Par ent Record : = RECORD
UNSI GNEDS8 i d;
STRI N&0 addr ess;
STRI N&0 CSsz;
STRI NGLO post code;
UNSI GNED2 nunKi ds;
DATASET(Chi | dRec) chi | dr en{ MAXCOUNT(100) };

END;
an example using { XPATH('tag")}
R := record
STRI NGLO f nane;
STRI NG1L2 | nan®;
SET OF STRINGL MySet { XPATH(' Set/El enment')}; //define set tags
END;
B : = DATASET([{' Fred','Bell',['A,'B 1},

{' George','Blanda' ,['C ,'D]},
{"sam," ", ['E,"F]1 } 1, R;

OQUTPUT(B, ,' ~RTTEST: : test.xm ', XWM);

/* this exanple produces XM. output that |ooks |ike this:
<Dat aset >
<Row><f nane>Fr ed </fnane><| nane>Bel | </ | nane>

<Set ><El enent >A</ El enent ><El enent >B</ El enent ></ Set ></ Row>
<Row><f name>Geor ge</ f nanme><| nane>Bl anda </ | name>

<Set ><El enent >C</ El enent ><El enent >D</ El enent ></ Set ></ Row>
<Row><f nane>Sam </ f nane><| nanme> </ | nane>
<Set ><El enent >E</ El enent ><El enent >F</ El ement ></ Set ></ Row>
</ Dat aset >
*/

another XML example with a 1-field child dataset

cr : = RECORD, MAXLENGTH(1024)
STRI NG phoneEx{ XPATH("' ') };
END;
r : = RECORD, MAXLENGTH(4096)
STRI NG i d{ XPATH(' COVWP-1D) };
STRI NG phone{ XPATH(' PHONE- NUVBER) } ;
DATASET(cr) Fred{ XPATH(' PHONE- NUVMBER- EXP') } ;
END;

DS : = DATASET([{'1002',' 1352, 9493" ,[' 1352, '9493"]},

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
64

ECL Language Reference
Record Structures and Files

{'1003',' 4846, 4582, 0779' ,[' 4846' ,' 4582' ,' 0779']}],r);

QUTPUT(ds, , ' ~RTTEST: : XM_.t est 2",
XM_(' RECORD ,
HEADI NG ' <?xml versi on="1. 0" encodi ng="UTF- 8" ?><RECORDS>' ,
' </ RECORDS>')));

/* this exanpl e produces XM. output that |ooks |ike this:
<?xm version="1.0" encodi ng="UTF-8" ?>
<RECORDS>
<RECORD>
<COWP- | D>1002</ COWP- | D>
<PHONE- NUMBER>1352, 9493</ PHONE- NUVBER>
<PHONE- NUMBER- EXP>1352</ PHONE- NUMBER- EXP>
<PHONE- NUMBER- EXP>9493</ PHONE- NUMBER- EXP>
</ RECORD>
<RECORD>
<COWP- | D>1003</ COWP- | D>
<PHONE- NUMBER>4846, 4582, 0779</ PHONE- NUVBER>
<PHONE- NUMBER- EXP>4846</ PHONE- NUVBER- EXP>
<PHONE- NUMBER- EXP>4582</ PHONE- NUMBER- EXP>
<PHONE- NUMBER- EXP>0779</ PHONE- NUVMBER- EXP>
</ RECORD>
</ RECORDS>
*/

XPATH can also be used to define a JSON file

/* a JSON file called "MBooks.json" contains this data:

[

{
"id" @ "978-0641723445",
"name" : "The Lightning Thief",
"author" : "Rick Riordan"

}

{
"id" : "978-1423103349",
"nane" : "The Sea of Mnsters",
"author" : "Rick Ri ordan"

}

]
*/

BookRec : = RECORD

STRING I D {XPATH('id')}; //data fromid tag -- renames field to uppercase

STRING title {XPATH(' nane')}; //data from nanme tag, renamng the field

STRI NG aut hor; //data fromauthor tag, tag nane is | owercase and matches field nanme
END;

books : = DATASET(' ~j d:: mybooks.json', BookRec, JSON('/"));
QUTPUT(books) ;

See Also: DATASET, DICTIONARY, INDEX, OUTPUT, TABLE, TRANSFORM Structure, TYPE Structure,
SOAPCALL

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
65

ECL Language Reference
Record Structures and Files

DATASET

attr := DATASET((file, struct, filetype [,L OOKUPY]);

attr := DATASET (dataset, file, filetype [,LL OOKUP));

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

[attr :=] DATASET(recordset [, recstruct |);

DATASET(row)

DATASET (childstruct [, COUNT(count) |LENGTH(size)] [, CHOOSEN(maxrecs)])

[GROUPED] [LINK COUNTED] [STREAMED] DATASET(struct)

DATASET(dict)

DATASET (count, transform [, DISTRIBUTED |LOCAL])

attr

The name of the DATASET for later use in other definitions.

file

A string constant containing the logical file name. See the Scope & Logical Filenames
section for more on logical filenames.

struct

The RECORD structure defining the layout of the fields. This may use RECORDOF.

filetype

One of the following keywords, optionally followed by relevant options for that spe-
cific type of filee THOR /FLAT, CSV, XML, JSON, PIPE. Each of theseis discussed
in its own section, below.

dataset

A previoudly-defined DATASET or recordset from which therecord layout is derived.
Thisformis primarily used by the BUILD action and is equivalent to:

ds : = DATASET(' fil enane', RECORDOF(anot her dataset), ...)

LOOKUP

Optional. Specifies that the file layout should be looked up at compile time. See File
Layout Resolution at Compile Time in the Programmer's Guide for more details.

WORKUNIT

Specifiesthe DATASET istheresult of an OUTPUT with the NAMED option within
the same or another workunit.

wuid

Optional. A string expression that specifies the workunit identifier of the job that pro-
duced the NAMED OUTPUT.

namedoutput

A string expression that specifies the name given in the NAMED option.

recordset

A set of in-line datarecords. This can simply name a previously-defined set definition
or explicitly use square brackets to indicate an in-line set definition. Within the square
brackets records are separated by commas. The records are specified by either:

1) Using curly braces ({}) to surround the field values for each record. Thefield values
within each record are comma-delimited.

2) A comma-delimited list of in-line transform functions that produce the data rows.
All the transform functionsin the list must produce records in the same result format.

recstruct

Optional. The RECORD structure of the recordset. Omittable only if the recordset
parameter isjust onerecord or alist of in-line transform functions.

row

A single data record. This may be a single-record passed parameter, or the ROW or
PROJECT function that defines a 1-row dataset.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

66

ECL Language Reference
Record Structures and Files

childstruct The RECORD dtructure of the child records being defined. This may use the
RECORDOF function.

COUNT Optional. Specifies the number of child records attached to the parent (for use when
interfacing to external file formats).

count An expression defining the number of child records. This may be a constant or afield
in the enclosing RECORD structure (addressed as SEL F.fieldname).

LENGTH Optional. Specifies the size of the child records attached to the parent (for use when
interfacing to external file formats).

Size An expression defining the size of child records. This may be a constant or afield in
the enclosing RECORD structure (addressed as SELF.fieldname).

CHOOSEN Optional. Limits the number of child records attached to the parent. This implicitly
uses the CHOOSEN function wherever the child dataset is read.

Mmaxrecs An expression defining the maximum number of child records for a single parent.

GROUPED Specifiesthe DATASET being passed has been grouped using the GROUP function.

LINKCOUNTED

Specifies the DATASET being passed or returned uses the link counted format (each
row isstored asaseparate memory allocation) instead of the default (embedded) format
wheretherows of adataset are all storedin asingle block of memory. Thisisprimarily
for usein BEGINC++ functions or external C++ library functions.

STREAMED Specifiesthe DATASET being returned is returned as a pointer to an IRowStream in-
terface (see the eclhelper.hpp include file for the definition).Valid only as a return
type. Thisis primarily for use in BEGINC++ functions or external C++ library func-
tions.

struct The RECORD structure of the dataset field or parameter. This may use the RECORD-
OF function.

dict The name of aDICTIONARY definition.

count An integer expression specifying the number of recordsto create.

transform The TRANSFORM function that will create the records. This may take an integer
COUNTER parameter.

DISTRIBUTED Optional. Specifies distributing the created records across all nodes of the cluster. If
omitted, all records are created on node 1.

LOCAL Optional. Specifies records are created on every node.

The DATASET declaration defines afile of records, on disk or in memory. The layout of the recordsis specified by a
RECORD structure (the struct or recstruct parameters described above). The distribution of records across execution
nodes is undefined in general, as it depends on how the DATASET came to be (sprayed in from a landing zone or
written to disk by an OUTPUT action), the size of the cluster on which it resides, and the size of the cluster on which
it is used (to specify distribution requirements for a particular operation, see the DISTRIBUTE function).

The first two forms are aternatives to each other and either may be used with any of the filetypes described below
(THOR/FLAT, CSV, XML, JSON, PIPE).

The third form defines the result of an OUTPUT with the NAMED option within the same workunit or the workunit
specified by the wuid (see Named Output DATASET s below).

The fourth form defines an in-line dataset (see I n-line DATASET s below).

The fifth form is only used in an expression context to allow you to in-line a single record dataset (see Single-row
DATASET Expressions below).

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
67

ECL Language Reference
Record Structures and Files

The sixth form is only used as a value type in a RECORD structure to define a child dataset (see Child DATASETSs
below).

The seventh form is only used as avalue type to pass DATASET parameters (see DATASET as a Parameter Type
below).

The eighth form is used to define a DICTIONARY asaDATASET (see DATASET from DICTIONARY below).

The ninth form is used to create aDATASET using a TRANSFORM function (see DATASET from TRANSFORM
below)

THOR/FLAT Files

attr := DATASET(file, struct, THOR [,__ COMPRESSED__][,OPT] [UNSORTED][,PREL OAD([nbr])] [,EN-
CRYPT (key)]);

attr := DATASET(file, struct, FLAT [,__COMPRESSED__] [,OPT] [,LUNSORTED] [,PRELOAD([nbr])] [,EN-
CRYPT (key)]);

THOR Specifiesthefileisin the Data Refinery (may optionally be specified asFL AT, which
is synonymous with THOR in this context).

__ COMPRESSED Optional. Specifies that the THOR file is compressed because it is a result of the
PERSIST Workflow Service or was OUTPUT with the COMPRESSED option.

_ GROUPED__ Specifiesthe DATASET has been grouped using the GROUP function.

OPT Optional. Specifies that using dataset when the THOR file doesn't exist resultsin an
empty recordset instead of an error condition.

UNSORTED Optional. Specifiesthe THOR file is not sorted, as a hint to the optimizer.

PRELOAD Optional. Specifiesthefileisleft in memory after loading (valid only for Rapid Data

Delivery Engine use).

nbr Optional. Aninteger constant specifying how many indexes to create "on the fly" for
speedier access to the dataset. If > 1000, specifies the amount of memory set aside
for these indexes.

ENCRYPT Optional. Specifiesthe file was created by OUTPUT with the ENCRY PT option.
key A string constant containing the encryption key used to create the file.

Thisform definesaTHOR filethat existsin the DataRefinery. Thiscould contain either fixed-length or variable-length
records, depending on the layout specified in the RECORD struct.

The struct may contain an UNSIGNEDS8 field with either {virtual (fileposition)} or {virtual (localfileposition)} append-
ed to thefield name. Thisindicates the field containsthe record's position within thefile (or part), and is used for those
instances where a usable pointer to the record is needed, such as the BUILD function.

Example:

Pt bl Rec : = RECORD
STRIN& State := Person. per_st;
STRINGO City := Person.per_full _city;
STRI N&5 Lnane : = Person. per_| ast _nane;
STRI NGL5 Fnane : = Person. per_first_nane;
END;

Tbl := TABLE(Person, Pt bl Rec) ;

Ptbl Qut := OUTPUT(Tbl,,"' RTTEMP: : TestFile');
/[/wite a THOR file

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
68

ECL Language Reference
Record Structures and Files

Pt bl : = DATASET(' ~Thor 400: : RTTEMP: : TestFi l e',
{Ptbl Rec, UNSI GNED8 _ fpos {virtual (fil eposition)}},
THOR, OPT) ;

/1l __fpos contains the "pointer" to each record

/1 Thor400 is the scope name and RTTEMP is the

/1 directory in which TestFile is |ocated

[/ usi ng ENCRYPT
QUTPUT(Tbl , , ' ~Thor 400: : RTTEMP: : Test Fi | eEncrypt ed' , ENCRYPT(' nykey'));
Pt bl E : = DATASET(' ~Thor 400: : RTTEMP: : Test Fi | eEncrypted',

Pt bl Rec,

THOR, OPT, ENCRYPT(' nykey'));

CSV Files

attr := DATASET (file, struct, CSV [([HEADING(n)] [, SEPARATOR(f_delimiters)]

[, TERMINATOR(r_dédimiters)][, QUOTE(characters)] [, ESCAPE(esc)] [, MAXLENGTH(size)]

[ASCII | EBCDIC | UNICODE][, NOTRIM])] [LENCRYPT(key)][, _ COMPRESSED__]);

csv Specifiesthefile isa"comma separated values' ASCII file.

HEADING(n) Optional. The number of header recordsin thefile. If omitted, the default is zero (0).
SEPARATOR Optional. The field delimiter. If omitted, the default is a comma (',") or the delimiter
specified in the spray operation that put the file on disk.

f delimiters A single string constant, or set of string constants, that define the character(s) used as
the field delimiter. If Unicode constants are used, then the UTF8 representation of the
character(s) will be used.

TERMINATOR Optional. Therecord delimiter. If omitted, thedefaultisalinefeed ('\n") or the delimiter
specified in the spray operation that put the file on disk.

r_delimiters A single string constant, or set of string constants, that define the character(s) used as
the record delimiter.

QUOTE Optional. The string quote character used. If omitted, the default is asingle quote ('\")
or the delimiter specified in the spray operation that put the file on disk.

characters A single string constant, or set of string constants, that define the character(s) used as
the string value delimiter.

ESCAPE Optional. The string escape character used to indicate the next character (usualy a
control character) ispart of the dataand not to beinterpreted asafield or row delimiter.
If omitted, the default is the escape character specified in the spray operation that put
thefile on disk (if any).

esc A single string constant, or set of string constants, that define the character(s) used to
escape control characters.

MAXLENGTH(size) Optional. Maximum record length in thefile. If omitted, the default is 4096.

ASCII Specifiesal input isin ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifiesall inputisin EBCDIC format except the SEPARATOR and TERMINATOR
(which are expressed as ASCII values).

UNICODE Specifiesall input isin Unicode UTF8 format.

NOTRIM Specifies preserving all whitespace in the input data (the default is to trim leading
blanks).

ENCRYPT Optional. Specifiesthe file was created by OUTPUT with the ENCRY PT option.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

69

ECL Language Reference
Record Structures and Files

key A string constant containing the encryption key used to create the file.
__ COMPRESSED__ Optional. Specifiesthat thefileiscompressed becauseit was OUTPUT with the COM-
PRESSED option.

Thisform is used to read an ASCII CSV file. This can also be used to read any variable-length record file that has a
defined record delimiter. If none of the ASCII, EBCDIC, or UNICODE options are specified, the default input isin
ASCII format with any UNICODE fieldsin UTF8 format.

Example:

CSVRecord : = RECORD
UNSI GNED4 per son_i d;
STRI N&0 per _sur naneg;
STRI NGQ0 per _f or enane;

END;
filel := DATASET(' MFil e. CSV', CSVrecord, CSV) ; /lall defaults
file2 := DATASET(' M/Fil e. CSV', CSVrecord, CSV(HEADI NG 1)); //1 header
file3 := DATASET(' MyFil e. CSV' ,
CSVrecord,
CSV(HEADI N&(1) ,
SEPARATOR([',","\t"']),

TERM NATOR(['\n',"\r\n',"\n\r"'])));
/11 header record, either conma or tab field delimters,
I/l either LF or CRILF or LF/CR record delinmiters

XML Files

attr := DATASET((file, struct, XML (xpath [, NOROOT]) [,ENCRY PT (key)]);

XML Specifiesthefileisan XML file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
thefile.

NOROOT Specifiesthefileisan XML file with no file tags, only row tags.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRY PT option.

key A string constant containing the encryption key used to create the file.

Thisformisusedto read an XML fileinto the DataRefinery. The xpath parameter definestherecord delimiter tag using
asubset of standard XPATH (www.w3.0rg/TR/xpath) syntax (see the XPATH Support section under the RECORD
structure discussion for a description of the supported subset).

The key to getting individual field values from the XML liesin the RECORD structure field definitions. If the field
name exactly matches alower case XML tag containing the data, then nothing special isrequired. Otherwise, {xpath(x-
pathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH syntax) is
required to extract the data. An XPATH consisting of empty angle brackets (<>) indicates the field receives the entire
record. An absolute XPATH isused to access properties of parent elements. Because XML is case sensitive, and ECL
identifiers are case insensitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then alarge data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* an XML file called "MyFile" contains this XM data:

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
70

ECL Language Reference
Record Structures and Files

<library>
<book i sbn="123456789X" >
<aut hor >Bayl i ss</ aut hor >
<title>A Way Too Far</title>
</ book>
<book i sbn="1234567801" >
<aut hor >Smi t h</ aut hor >
<title>A Way Too Short</title>
</ book>
</library>
*/

rform:= RECORD
STRI NG aut hor; //data fromauthor tag -- tag nane is | owercase and matches field name
STRI NG nanme {XPATH('title')}; //data fromtitle tag, renamng the field
STRING i sbn { XPATH(' @sbn')}; //isbn definition data from book tag

tag

END;

books : = DATASET(' MyFile',rform XM_('li brary/book'));

JSON Files

attr := DATASET((file, struct, JSON(xpath [, NOROOT]) [ENCRYPT (key) 1);

JSON Specifiesthefileis a JSON file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
thefile.

NOROOT SpecifiesthefileisaJSON file with no root level markup, only acollection of objects.

ENCRYPT Optional. Specifiesthe file was created by OUTPUT with the ENCRY PT option.

key A string constant containing the encryption key used to create the file.

Thisform is used to read a JSON file. The xpath parameter defines the path used to locate records within the JSON
content using a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support section under
the RECORD structure discussion for a description of the supported subset).

The key to getting individua field values from the JSON lies in the RECORD structure field definitions. If the field
name exactly matches alower case JSON tag containing the data, then nothing special isrequired. Otherwise, {xpath(x-
pathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH syntax) is
required to extract thedata. An XPATH consisting of empty quotes (") indicatesthefield receivesthe entirerecord. An
absolute XPATH is used to access properties of child elements. Because JSON is case sensitive, and ECL identifiers
are case insengitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: JSON reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then alarge data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* a JSON file called "M/Books.json" contains this data:

[

{
"id" : "978-0641723445",
"name" : "The Lightning Thief",
“"author" : "Rick Riordan”

}

{

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
71

ECL Language Reference
Record Structures and Files

"id" : "978-1423103349",
"name" : "The Sea of Mbnsters",
"author" : "Rick Ri ordan"

}

]
*/

BookRec : = RECORD

STRING I D {XPATH('id')}; //data fromid tag -- renanes field to uppercase

STRING title {XPATH(' nane')}; //data fromnane tag, renam ng the field

STRI NG aut hor; //data fromauthor tag -- tag nane is | owercase and matches field nane
END;

books : = DATASET(' ~j d: : nybooks. j son', BookRec, JSON(' /'));
OQUTPUT(books) ;

PIPE Files

attr := DATASET((file, struct, PIPE(command [, CSV | XML]));

PIPE Specifies the filecomes from the commandprogram. Thisisa"read" pipe.

command The name of the program to execute, which must output records in the struct format
to standard outpui.

csv Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output dataformat is XML. If omitted, the format is raw.

This form uses PIPE(command) to send the file to the command program, which then returns the records to standard
output in the struct format. Thisis also known as an input PIPE (analogous to the PIPE function and PIPE option
on OUTPUT).

Example:

Pt bl Rec : = RECORD
STRI N& St at e;
STRING0 City;
STRI N&5 Lnane;
STRI NGL5 Fnane;

END;

Pt bl := DATASET(' ~Thor50: : RTTEMP: : TestFil e',
Pt bl Rec,
Pl PE(' ProcessFile'));
/] ProcessFile is the input pipe

Named Output DATASETS

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

This form allows you to use as a DATASET the result of an OUTPUT with the NAMED option within the same
workunit, or the workunit specified by thewuid (workunit ID). Thisisafeature most useful inthe Rapid Data Delivery
Engine.

Example:

// Naned CQut put DATASET in the sane workunit:

a := QUTPUT(Person(per_st="FL') , NAMED(' Fl ori daFol k'));
X : = DATASET(WORKUNI T(' Fl ori daFol k'),

RECORDO(Per son)) ;
b := QUTPUT(x(per_first_name[l..4]="RICH));

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
72

ECL Language Reference
Record Structures and Files

SEQUENTI AL(a, b) ;

/I Naned CQut put DATASET in separate workunits:

[/ First Wrkunit (wii d=W20051202-155102) contains this code:

M/Rec : = {STRINGL Val uel, STRINGL Val ue2, | NTEGER1 Val ue3};

SoneFile := DATASET([{'C ,'G,1},{'C,'C,2},{'A,'X,6 3},
{'B,'G,4},{"A,"B,5}], MRec) ;

OQUTPUT(SoneFi | e, NAVED(' Fred'));

/1 Second workunit contains this code, producing the sane result:
ds : = DATASET(WORKUNI T(' W20051202- 155102' ,' Fred'), MRec);
QUTPUT(ds) ;

In-line DATASETS

[attr :=] DATASET (recordset , recstruct);

Thisform allowsyoutoin-lineaset of dataand haveit treated asafile. Thisisuseful in situationswherefile operations
are needed on dynamically generated data (such as the runtime values of a set of pre-defined expressions). It is aso
useful to test any boundary conditions for definitions by creating a small well-defined set of records with constant
values that specifically exercise those boundaries. This form may be used in an expression context.

Nested RECORD structures may be represented by nesting records within records. Nested child datasets may also be
initialized inside TRANSFORM functions using inline datasets (see the Child DATASET s discussion).

Example:

/1l nline DATASET usi ng definition val ues
myrec := {REAL diff, |INTEGERL reason};

rnms5008 : = 10. 0;
rnms5009 : = 11.0;
rnms5010 : = 12.0;

bt abl e : = DATASET([{rns5008, 72}, {r ns5009, 7}, {rnms5010, 65}], myrec);

/11nline DATASET with nested RECORD structures
naneRecord : = {STRI NG0 | nane, STRI NG1LO fnane, STRINGL initial :="'"};
per sonRecord : = RECORD
nanmeRecord primary;
nanmeRecor d not her;
nameRecord fat her;
END;
per sonDat aset : = DATASET([{{' Janmes','Walters','C},
{'Jessie',"'Blenger'},
{'Horatio',"Walters'}},
{{" Anne' ,' Wnston'},
{'Sant',"' Acl ause'},
{"EIfin","And'}}], personRecord);

/1 Inline DATASET containing a Child DATASET
chi | dPersonRecord : = { STRI NG f nane, UNSI GNED1 age};
personRecord : = RECORD
STRI NG20 f nane;
STRI NG20 | nane;
UNSI GNED2 nuntChi | dr en;
DATASET(chi | dPer sonRecor d) chi | dren;
END;

per sonDat aset := DATASET([{' Kevin',6'Hall"',2,[{" Abby',2},{' Nat',6 2}]},
{*Jon',"'Simms',3,[{"Jen',18},{"Ali', 16}, {' Andy', 13}]1}1,
per sonRecor d) ;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
73

ECL Language Reference
Record Structures and Files

/1 Inline DATASET derived froma dynam c SET function
Set | Ds(STRI NG f nane) := SET(Peopl e(firstnanme=fnane),id);
ds : = DATASET(Set | Ds(' RICHARD), { People.id});

/! Inline DATASET derived froma list of transforns
| Dt ype : = UNSI GNEDS;

FM ype : = STRI NGL5;

Ltype : = STRI N&5;

resul t Rec : = RECORD
| Dtype id;
FM ype firstnane;
Lt ype | ast nan®;
FM ype m ddl enane;
END;

T1(| Dtype idval , FM ype fnane, Ltype | nane) :=
TRANSFORM r esul t Rec,

SELF.id := idval,

SELF. firstnane := fnane,
SELF. | ast nane : = | nane,
SELF :=[1);

T2(I Dtype idval, FMype fnanme, FMype mane, Ltype Iname) :=
TRANSFORM r esul t Rec,

SELF.id := idval,

SELF. firstnane : = fnane,
SELF. mi ddl enane : = mane,
SELF. | ast nane : = | nane);

ds := DATASET([T1(123,' Fred', ' Jones'),
T2(456, " John',"' @ ,"' Public'),
T1(789, Susie','Smith')]);

/!l You can construct a DATASET from a SET.

SET OF STRING s := ['Jinl,'Bob','Richard' ,' Tom];
DATASET(s, { STRING txt});

Single-row DATASET Expressions

DATASET(row)
Thisformisonly used in an expression context. It allows you to in-line asingle record dataset.

Example:

//the foll ow ng exanpl es denpnstrate 4 ways to do the sane thing:
personRecord : = RECORD

STRI N&0 sur nane;

STRI NGLO f or enane;

| NTEGER2 age : = 25;

END;

nanesRecord : = RECORD
UNSI GNED id;
per sonRecor d;

END;

nanesTabl e : = DATASET(' RTTEST: : Test Row , nanmesRecor d, THOR) ;
//sinple dataset file declaration form

addr essRecord : = RECORD

UNSI GNED id;
DATASET(per sonRecor d) peopl e; [/child dataset form
STRI NAO street;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
74

ECL Language Reference
Record Structures and Files

STRI N0 t own;
STRI N& st;

END;

personRecord tcO(nanmesRecord L) : = TRANSFORM
SELF := L;

END;

/1** 1st way - using in-line dataset formin an expression context
addressRecord tO(nanesRecord L) := TRANSFORM

SELF. peopl e : = PRQJECT(DATASET([{L.id, L. surnane, L. forenane, L. age}],

namesRecord),
t cO(LEFT));

SELF.id := L.id;

SELF :=[];
END;

p0 : = PRQJIECT(nanesTabl e, tO(LEFT));
OQUTPUT(p0) ;

/1** 2nd way - using single-row dataset form

addressRecord t1(nanesRecord L) := TRANSFORM
SELF. peopl e : = PROJECT(DATASET(L), tcO(LEFT));
SELF.id := L.id;
SELF :=[];

END;

pl : = PRQIECT(nanesTabl e, t1(LEFT));
QUTPUT(p1) ;

/1** 3rd way - using single-row dataset form and ROW function
addressRecord t2(nanesRecord L) := TRANSFORM

SELF. peopl e : = DATASET(RON L, per sonRecord));

SELF.id := L.id;

SELF :=[];
END;

p2 : = PRQJIECT(nanesTabl e, t2(LEFT));
QUTPUT(p2) ;

[1** 4th way - using in-line dataset formin an expression context
addressRecord t4(nanesRecord |) := TRANSFORM
SELF. peopl e : = PRQJECT(DATASET([L], nanesRecord), tcO(LEFT));
SELF.id := L.id;
SELF :=[];
END;
p3 : = PRQIECT(nanesTabl e, t4(LEFT));
QUTPUT(p3) ;

Child DATASETs

DATASET (childstruct [, COUNT(count) |LENGTH(size)] [, CHOOSEN(maxrecs)])

Thisform is used as avalue type inside a RECORD structure to define child dataset records in a non-normalized flat
file. The form without COUNT or LENGTH isthe simplest to use, and just means that the dataset the length and data
are stored within myfield. The COUNT form limits the number of elements to the count expression. The LENGTH
form specifies the size in another field instead of the count. This can only be used for dataset input.

The following alternative syntaxes are also supported:
childstruct fieldname [SELF.count]

DATASET newname := fieldname

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
75

ECL Language Reference
Record Structures and Files

DATASET fieldname (deprecated form -- will go away post-SR9)

Any operation may be performed on child datasets in hthor and the Rapid Data Delivery Engine (Roxie), but only the
following operations are supported in the Data Refinery (Thor):

1) PROJECT, CHOOSEN, TABLE (non-grouped), and filters on child tables.
2) Aggregate operations are alowed on any of the above

3) Several aggregates can be calculated at once by using

summary : = TABLE(x.children,{ f1 := COUNT(GROUP),
f2 := SUM GROUP, x),
f3 := MAX(GROUP, ¥)});

summary. f 1;

4) DATASETIn] is supported to index the child elements

5) SORT (dataset, a, b)[1] is also supported to retrieve the best match.

6) Concatenation of datasetsis supported.

7) Temporary TABLES can be used in conjunction.

8) Initialization of child datasetsin temp TABLE definitions allows|[] to be used to initialize O elements.

Note that,
TABLE(ds, { ds.id, ds.children(age != 10) });

is not supported, because a dataset in arecord definition means "expand al the fields from the dataset in the output.”
However adding an identifier creates aform that is supported:

TABLE(ds, { ds.id, newChildren := ds.children(age != 10); });

Example:

Parent Rec : = {I NTEGERL Nanel D, STRI N&0 Nane};
Parent Tabl e : = DATASET([{1, 'Kevin'},{2,'Liz'},
{3,' M Nobody'},{4,"' Anywhere'}], ParentRec);
Chil dRec : = {I NTEGERL Nanel D, STRI NG20 Addr};
Chi | dTabl e : = DATASET([{1,'10 Malt Lane'},{2,'10 Malt Lane'},
{2,'3 The cottages'}, {4, Here'},{4,' There'},
{4, Near'}, {4, Far'}], Chil dRec);
Denor nedRec : = RECORD
| NTEGERL Nanel D;
STRI NG0 Nane;
UNSI GNED1 NunRows;
DATASET(Chi | dRec) Chi |l dren;
/1 ChildRec Children; //alternative syntax
END;

Denor redRec Par ent Move(Parent Rec L) := TRANSFORM
SELF. NunRows : = O;
SELF. Children := [];
SELF : = L;

END;

Parent Only : = PRQIECT(Par ent Tabl e, Parent Move(LEFT));

Denor medRec Chi | dvbve(Denor medRec L, Chi |l dRec R, | NTEGER C) : =TRANSFORM
SELF. NunRows : = C
SELF. Children := L.Children + R;
SELF := L;

END;

DeNor redRecs : = DENORMALI ZE(Parent Only, Chil dTabl e,

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
76

ECL Language Reference
Record Structures and Files

LEFT. Nanel D = RI GHT. Nanel D,
Chi | dMbve(LEFT, Rl GHT, COUNTER)) ;
OUTPUT(DeNor nedRecs, , ' RTTEMP: : Test Chi | dDat asets') ;

/1 Using inline DATASET in a TRANSFORM to initialize child records
AkaRec : = {STRI NG20 forenane, STRI N&0 sur nane};
out put Rec : = RECORD
UNSI GNED i d;
DATASET(AkaRec) chi |l dren;
END;

i nput Rec : = RECORD
UNSI| GNED i d;
STRI N&0 f or enang;
STRI N&0 sur narne;
END;

i nPeopl e : = DATASET([
{1,"Kevin',"Halliday'},{1,'Kevin',"Hall"'}, {1,'Gawain',"' "'},
{2,"Liz',"Halliday'},{2,'Elizabeth','Halliday'},
{2,"Elizabeth',"'MidenNane'},{3,'Lorraine',"' Chapnan'},
{4, Richard',' Chapman'}, {4, John',"' Doe'}], inputRec);

out put Rec nakeFat Recor d(i nput Rec |) : = TRANSFORM

SELF.id :=1.id;
SELF. chil dren : = DATASET([{ |.forenane, |.surnane }], AkaRec);

END;

fatln : = PRQIECT(i nPeopl e, makeFat Recor d(LEFT));
out put Rec nakeChi | dren(out put Rec |, outputRec r) := TRANSFORM

SELF.id :=1.id;
SELF. children :=1.children + RON{r.children[1].forenang,
r.children[1]. surnane},
AkaRec) ;
END;

r := ROLLUP(fatln, id, nmakeChildren(LEFT, RIGHT));

DATASET as a Parameter Type

[GROUPED] [LINKCOUNTED] [STREAMED] DATASET(struct)

This form is only used as a Value Type for passing parameters, specifying function return types, or defining a SET
OF datasets. If GROUPED is present, the passed parameter must have been grouped using the GROUP function. The
LINKCOUNTED and STREAMED keywords are primarily for use in BEGINC++ functions or external C++ library
functions.

Example:

M/Rec := {STRINGL Letter};
SonmeFile := DATASET([{' A}, {'B},.{'C},{'D},{'E}],MRec);

[/ Passi ng a DATASET par anet er
Fi | ter edDS(DATASET(M/Rec) ds) := ds(Letter NOT IN['A','C,'E]);
/| passed dat aset referenced as "ds" in expression

OUTPUT(Fi | t er edDS(SoneFi | e)) ;

//***

/1 The follow ng exanpl e denpnstrates using DATASET as both a
/| paranmeter type and a return type
rec_Person : = RECORD

STRI NG20 Fi r st Nane;

STRI N&20 Last Nane;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
77

ECL Language Reference
Record Structures and Files

END,;

rec_Person_exp : = RECORD(rec_Person)
STRI NG0 NaneOpti on;

END;
rec_Person_exp xfm Di spl ayNames(rec_Person |, INTEGER w) : =
TRANSFORM
SELF. NaneQOption : =
CHOOSE(w,
TRIMI.FirstNane) + ' ' + |.Last Nane,
TRIM I . LastName) + ', ' + |.FirstNang,
| . FirstName[1] + |.Last Nane[1],
| . Last Nane) ;
SELF : = 1|;
END;

DATASET(r ec_Person_exp) prototype(DATASET(rec_Person) ds) :=
DATASET([], rec_Person_exp);

DATASET(r ec_Person_exp) D spl ayFul | Name(DATASET(r ec_Per son) ds)
PRQJIECT(ds, xfm Di spl ayNanes(LEFT, 1));

DATASET(rec_Person_exp) D spl ayRevNanme(DATASET(rec_Person) ds) :=
PRQJIECT(ds, xfm D spl ayNanmes(LEFT, 2));

DATASET(rec_Person_exp) D spl ayFi r st Name(DATASET(rec_Person) ds) :=
PROJECT(ds, xfm Di spl ayNanmes(LEFT, 3));

DATASET(rec_Person_exp) D spl ayLast Name(DATASET(r ec_Per son) ds)
PRQJIECT(ds, xfm D spl ayNanmes(LEFT, 4));

DATASET(rec_Person_exp) Pl ayW t hName(DATASET(rec_Person) ds_in,
pr ot ot ype PassedFunc,
STRINGL SortOrder='A",
UNS| GNED1 Fi el dToSort =1,
UNSI GNED1 Pr ePost Fl ag=1) := FUNCTI ON
Fi el dPre : = CHOOSE(Fi el dToSort, ds_i n. Fi rst Nane, ds_i n. Last Nane) ;
Sor t edDSPr e(DATASET(r ec_Person) ds) :=
| F(Sort Order="'A",
SORT(ds, Fi el dPre),
SORT(ds, -FieldPre));
I nDS : = | F(PrePost Fl ag=1, Sort edDSPr e(ds_i n), ds_in);

PDS : = PassedFunc(1nDS); //call the passed function paraneter

Fi el dPost : = CHOOSE(Fi el dToSort ,
PDS. Fi r st Nane,
PDS. Last Nane,
PDS. NanmeQOpt i on) ;
Sor t edDSPost (DATASET(r ec_Person_exp) ds) :=
| F(SortOrder = "A',
SORT(ds, Fi el dPost),
SORT(ds, - Fi el dPost)) ;

Qut DS : = | F(PrePost Fl ag=1, PDS, Sor t edDSPost (PDS)) ;
RETURN Qut DS;
END;

//define inline datasets to use.
ds_nanesl : = DATASET([{'John','Snmith'},{' Henry','Jackson'},
{'Harry',' Potter'}], rec_Person);
DATASET([{' George',' Forenan'},
{' Sugar Ray', ' Robi nson'},
{"Joe', "' Louis'}], rec_Person);

ds_nanes?2 :

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
78

ECL Language Reference
Record Structures and Files

//get nane you want by passing the appropriate function paraneter:
s_Nanel := Pl ayWt hNane(ds_nanmesl, DisplayFull Nanme, 'A ,1,1);
s_Nanme2 : = Pl ayWthNane(ds_nanes2, D splayRevNane, 'D, 3, 2);
a_Nane := PlayWthNane(ds_nanmesl, DisplayFirstNane,'A ,1,1);
b_Name := Pl ayWthNane(ds_nanmes2, DisplaylLastNane, 'D,1,1);
OQUTPUT(s_Nanel) ;

QUTPUT(s_Nane2) ;

QUTPUT(a_Nan®) ;

QUTPUT(b_Nane) ;

DATASET from DICTIONARY

DATASET (dict)
Thisform re-definesthe dict asaDATASET.

Example:

rec := {STRING col or, UNSI GNED1 code, STRI NG nane};
Col or Codes := DATASET([{'Black' ,0 , 'Fred'},

{'Brown' ,1 , 'Sani},
{' Red' ,2 , 'Sue'},
{"Wite' ,3, 'J0'}], rec);

Col or CodesDCT : = DI CTI ONARY(Col or Codes, { Col or, Code}) ;

ds : = DATASET(Col or CodesDCT) ;
QUTPUT(ds) ;

See Also: OUTPUT, RECORD Structure, TABLE, ROW, RECORDOF, TRANSFORM Structure, DICTIONARY

DATASET from TRANSFORM

DATASET (count, transform [, DISTRIBUTED | LOCAL])

Thisform uses the transform to create the records. The result type of the transform function determines the structure.
The integer COUNTER can be used to number each iteration of the transform function.

LOCAL executes separately and independently on each node.

Example:

| MPORT STD;
msg(UNSIGNED c) := 'Rec ' + (STRINGc + ' on node ' + (STRING) (STD. system Thorl i b. Node() +1) ;

/1 DI STRI BUTED exanpl e
DS : = DATASET(CLUSTERSI ZE * 2,
TRANSFORM { STRI NG | i ne},
SELF. | i ne : = nmsg(COUNTER)),

DI STRI BUTED) ;

bS;
/* creates a result like this:

Rec 1 on node 1

Rec 2 on node 1

Rec 3 on node 2

Rec 4 on node 2

Rec 5 on node 3

Rec 6 on node 3

*/

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
79

ECL Language Reference
Record Structures and Files

/| LOCAL exanpl e

DS2 : = DATASET(2,
TRANSFORM { STRI NG | i ne},
SELF. | i ne : = nmsg(COUNTER)),
LOCAL) ;
DS2;

/* An alternative (and clearer) way
creates a result like this:

Rec 1 on node 1
Rec 2 on node 1
Rec 1 on node 2
Rec 2 on node 2
Rec 1 on node 3
Rec 2 on node 3

*/

See Also; RECORD Structure, TRANSFORM Structure

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
80

ECL Language Reference
Record Structures and Files

DICTIONARY

attr := DICTIONARY (dataset, structure);

DICTIONARY (structure)

attr The name of the DICTIONARY for later use in other definitions.

dataset The name of aDATASET or recordset from which to derivethe DICTIONARY. This
may be defined inline (similar to an inline DATASET).

structure The RECORD structure (often defined inline) specifying the layout of the fields. The

first field(s) are key fields, optionally followed the "resultsin” operator (=>) and addi-
tional payload fields. Thisissimilar to the payload version of an INDEX. The payload
may specify individual fields or may use the name of the dataset to payload all the
non-key fields.

A DICTIONARY alowsyou to efficiently check whether a particular data valueisin alist (using the IN operator),
or to simply map data. It is similar to a LOOKUP JOIN that can be used in any context.

DICTIONARY Definition

The DICTIONARY declaration defines a set of unique records derived from the dataset parameter and indexed by the
first field(s) named in the structure parameter. The DICTIONARY will contain one record for each unique value(s)
in the key field(s). Y ou can access an individual record by appending square brackets ([]) to the attr name of the
DICTIONARY, which contain the key field value(s) that identify the specific record to access.

DICTIONARY as a Value Type

The second form of DICTIONARY is avalue type with the structure parameter specifying the RECORD structure of
the data. This datatype usage allows you to specify aDICTIONARY asa child dataset, similar to theway DATASET
may be used to define a child dataset. This may aso be used to passa DICTIONARY as a parameter.

Example:

Col or Codes := DATASET([{' Bl ack’
{' Brown'
{' Red'

{' Orange',
{' Yell ow ,
{' Geen'
{' Bl ue'
{'Violet',
{' Gey
{"Wite'

©CoOoO~NOUDdWNEO
e e e N e e e o e

], {STRI NG col or, UNSI GNED1 code});

Col or CodesDCT :
Col or CodeDCT
CodeCol or DCT

DI CTlI ONARY(Col or Codes, { Col or, Code}); [Imulti-field key
DI CTI ONARY(Col or Codes, {Col or => Code}); //payload field
DI CTI ONARY(Col or Codes, { Code => Col or});

/| mappi ng exanpl es
MapCode2Col or (UNSI GNED1 code) :
MapCol or 2Code(STRI NG col or)

CodeCol or DCT[code] . col or;
Col or CodeDCT][col or] . code;

OUTPUT(MapCol or 2Code("' Red')); 112
OUTPUT(MapCode2Col or (4)); /1" Yel | ow

/| Search term exanpl es

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
81

ECL Language Reference
Record Structures and Files

QUTPUT(' Green' I N Col or CodeDCT); [//true
QUTPUT(6 | N CodeCol or DCT) ; [/true
OUTPUT(RON{' Red' , 2} , RECORDOF(Col or Codes)) I N Col or CodesDCT); //multi-field key, true

//multi-field payl oad exanpl es
rec : = RECORD

STRI NGLO col or;

UNSI GNED1 code;

STRI NGLO nane;

END;

Ds := DATASET([{'Black’ ,0 , 'Fred},
{'Brown' ,1, 'Seth'},
{' Red' .2, 'Sue'},
{"Wite' ,3, 'Jo'}], rec);

DsDCT : = DI CTI ONARY(DS, {col or => DS});

OQUTPUT(' Red" I N DsDCT); //true
DsDCT[' Red'] . code; /12
DsDCT[' Red'] . nan®; /| Sue

/linline DCT exanpl es
InlineDCT : = DI CTI ONARY([{'Black' => 0, 'Fred'},
{"Brown' => 1, 'Sam},
{' Red' => 2, 'Sue'},
{"Wite' =>3, 'Jo'}],
{ STRI NGLO col or => UNSI GNED1 code, STRI NG10 nan®e});

QUTPUT(' Red" IN InlineDCT); //true

I nl'i neDCT[' Red'] . code; /12

I nlineDCT[' Red'] . nane; /| Sue
InlineDCT[' Red'] ; //Red 2 Sue
//Form 2 exanpl es -- paraneter passing

MyDCTf unc(DI CTlI ONARY({ STRI NG10O col or => UNSI GNED1 code, STRI NGLO nane}) DCT,
STRI NGLO key) := DCT[key] . nane;

MyDCTf unc(| nl i neDCT, ' White'); //Jo

MyDCTf unc(DsDCT, ' Brown') ; /] Seth

See Also: DATASET, RECORD Structure, INDEX, IN Operator

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
82

ECL Language Reference
Record Structures and Files

INDEX

attr := INDEX([baserecset, | keys, indexfile [SORTED] [,OPT] [,COMPRESSED(LZW | ROW | FIRST)]
[,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(**value**)]]);

attr := INDEX([baserecset, | keys, payload, indexfile [, SORTED] [,OPT] [, COMPRESSED(LZW | ROW |
FIRST)] [,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH][(value)]]);

attr := INDEX(index,newindexfile[, MAXLENGTH[(value)]]);

attr The name of the INDEX for later use in other attributes.

baserecset Optional. The set of datarecords for which the index file has been created. If omitted,
al fieldsin the keysand payloadparameters must be fully qualified.

keys The RECORD structure of the fieldsin theindexfile that contains key and file position

information for referencing into the baserecset. Field names and types must match the
baserecset fields (REAL and DECIMAL type fields are not supported). Thismay aso
contain additional fields not present in the baserecset (computed fields). If omitted,
al fieldsin the baserecset are used.

payload The RECORD structure of theindexfilethat contains additional fields not used askeys.
If the name of the baserecset isin the structure, it specifies"all other fields not already
named in the keys parameter.” Thismay contain fields not present in the baserecordset
(computed fields). The payload fields do not take up space in the non-leaf nodes of
the index and cannot be referenced in a KEY ED() filter clause. Any field with the
{BLOB} madifier (to allow more than 32K of data per index entry) is stored within
the indexfile, but not with the rest of the record; accessing the BLOB data requires an

additional seek.

indexfile A string constant containing thelogical filename of theindex. Seethe Scope & Logical
Filenames section for more on logical filenames.

SORTED Optional. Specifies that when the index is accessed the records come out in the order
of the keys. If omitted, the returned record order is undefined.

OPT Optional. Specifies that using the index when the indexfile doesn't exist resultsin an
empty recordset instead of an error condition.

COMPRESSED Optional. Specifies the type of compression used. If omitted, the default isLZW, a

variant of the Lempel-Ziv-Welch algorithm. Specifying ROW compresses index en-
tries based on differences between contiguous rows (for use with fixed-length records,
only), and is recommended for use in circumstances where speedier decompression
time is more important than the amount of compression achieved. FIRST compresses
common leading elements of the key (recommended only for timing comparison use).

DISTRIBUTED Optional. Specifies that the index was created with the DISTRIBUTED option on the
BUILD action or the BUILD action simply referenced the INDEX declaration with
the DISTRIBUTED option. The INDEX is therefore accessed locally on each node
(similar to the LOCAL function, which is preferred), is not globally sorted, and there
isno root index to indicate which part of the index will contain aparticular entry. This
may be useful in Roxie queriesin conjunction with ALLNODES use.

FILEPOSITION Optional. If flag is FALSE, prevents the normal behavior of implicit fileposition field
being created and will not treat atrailing integer field any differently from the rest of
the payload.

flag Optional. TRUE or FAL SE, indicating whether or not to createtheimplicit fileposition
field.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
83

ECL Language Reference
Record Structures and Files

index The name of a previously defined INDEX attribute to duplicate.

newindexfile A string constant containing the logical filename of the new index. See the Scope &
Logical Filenames section for more on logical filenames.

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-

form versions prior to 3.0. Specifies the maximum length of a variable-length index
record. Fixed length records always use the minimum size required. If the default max-
imum length causes inefficiency problems, it can be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the maximum
sizeiscalculated from the record structure. Variable-length records that do not specify
MAXLENGTH may be dlightly inefficient

INDEX declares a previously created index for use. INDEX is related to BUILD (or BUILDINDEX) in the same
manner that DATASET isto OUTPUT--BUILD creates an index file that INDEX then defines for use in ECL code.
Index files are compressed. A single index record must be defined as less than 32K and result in aless than 8K page
after compression.

The Binary-tree metakey portion of the INDEX is a separate 32K file part on the first node of the Thor cluster on
which it was built, but deployed to every node of a Roxie cluster. There are as many leaf-node file parts as there are
nodes to the Thor cluster on which it was built. The specific distribution of the leaf-node records across execution
nodes is undefined in general, as it depends on the size of the cluster on which it was built and the size of the cluster
onwhichit is used.

These data types are supported in the keyed portion of an INDEX:
» BOOLEAN

* INTEGER

* UNSIGNED

* STRING

+ DATA

* QSTRING

All STRINGs must be fixed length.

Keyed Access INDEX

This form defines an index file to allow keyed access to the baserecset. The index is used primarily by the FETCH
and JOIN (with the KEY ED option) operations.

Example:

Pt bl Rec : = RECORD
STRIN& State : = Person. per_st;
STRIN&O City := Person.per_full_city;
STRI NG5 Lnane : = Person. per_| ast _nane;
STRI NGL5 Fnanme : = Person. per_first_naneg;
END;

Pt bl Qut : = OUTPUT(TABLE(Per son, Pt bl Rec),,' RTTEMP: : Test Fetch');

Pt bl := DATASET(' RTTEMP: : Test Fet ch',
{Pt bl Rec, UNSI GNED8 RecPtr {virtual (fileposition)}},

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
84

ECL Language Reference
Record Structures and Files

FLAT) ;
Al phal nStateCity := | NDEX(Pt bl ,
{state,city, | nane, f name, RecPtr},

' RTTEMPkey: : Test Fetch') ;
Bl d : = BUI LDI NDEX(Al phal nStateCity);

Payload INDEX

Thisform defines an index file containing extra payload fields in addition to the keys. The payload may contain fields
with the { BLOB} modifier to allow more than 32K of data per index entry. These BLOB fields are stored within the
indexfile, but not with the rest of the record; accessing the BLOB data requires an additional seek.

This form is used primarily by "half-key" JOIN operations to eliminate the need to directly access the baserecst,
thusincreasing performance over the "full-keyed" version of the same operation (done with the KEY ED option on the
JOIN). By default, payload fields are not sorted during the BUILD action to minimize space on the leaf nodes of the
key. This sorting behavior can be controlled by using sortindexPayload in a#OPTION statement.

Example:

Vehi cl es : = DATASET(' vehi cl es',
{STRIN& st, STRI NGO city, STRI NG0 | nane,
UNSI GNED8 f pos{virtual (fil eposition)}}, FLAT);

Vehi cl eKey : = | NDEX(Vehi cl es, {st, city}, {l nane, f pos}, ' vkey::st.city');
BUI LDI NDEX(Vehi cl eKey) :

Duplicate INDEX

This form defines a newindexfile that isidentical to the previously defined index.

Example:

NewMehi cl eKey : = | NDEX(Vehi cl eKey, ' NEW : vkey: :st.city');
/I def i ne NewVehi cl eKey |i ke Vehi cl eKey

See Also: DATASET, BUILDINDEX, JOIN, FETCH, KEYED/WILD

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
85

ECL Language Reference
Record Structures and Files

Scope and Logical Filenames

File Scope

The logical filenames used in DATASET and INDEX attribute definitions and the OUTPUT and BUILD (or
BUILDINDEX) actions can optionaly begin with a ~ meaning it is absolute, otherwise it is relative (the platform
configured scope prefix is prepended). It may contain scopes delimited by double colons (::) with the final portion
being the filename. It cannot have atrailing double colons (::). A cluster qualifier can be specified. For example, ~my-
file@mythor2 points to one file where the file is on multiple clusters in the same scope. Valid characters of a scope
or filename are ASCII >32 < 127 except * " /: <> ?and |.

To reference uppercase characters in physical file paths and filenames, use the caret character (*). For example,
'~file::10.150.254.6::var::lib::*h"p c e systems.: mydropzone:: Apeopl e.txt'.

The presence of a scope in the filename alows you to override the default scope name for the cluster. For example,
assuming you are operating on a cluster whose default scope name is "Training" then the following two OUTPUT
actions result in the same scope:

OUTPUT(SoneFi |l e, , ' SoneDir: : SoneFi | eCut 1');
QUTPUT(SoneFi |l e, , "' ~Trai ni ng: : SoneDi r: : SoneFi | eCut 2') ;

The presence of the leading tilde in the filename only defines the scope name and does not change the set of disks
to which the datais written (files are always written to the disks of the cluster on which the code executes). The
DATASET declarations for these files might ook like this:

RecStruct := {STRING | i ne};
dsl : = DATASET(' SoneDir:: SoneFil eQutl', RecStruct, THOR);
ds2 : = DATASET(' ~Trai ni ng:: SomeDi r: : SoneFi | eCut 2' , RecStruct, THOR) ;

These two files are in the same scope, so that when you use the DATASETs in aworkunit the Distributed File Utility
(DFU) will ook for both filesin the Training scope.

However, once you know the scope name you can reference files from any other cluster within the same environment.
For example, assuming you are operating on a cluster whose default scope name is"Production” and you want to use
the data in the above two files. Then the following two DATASET definitions allow you to access that data:

FileX :
FileY :

DATASET(' ~Trai ni ng: : SomeDi r: : SomeFi | eQut 1' , RecStruct, THOR) ;
DATASET("' ~Trai ni ng: : SomeDi r: : SomeFi | eCut 2' , RecStruct, THOR) ;

Notice the presence of the scope name in both of these definitions. This is required because the files are in another
scope.

Y ou should be frugal with file scope usage. The depth of file scopes can have a performance cost in systemswith File
Scope Security enabled. This cost is higher still when File Scope Scans are enabled because the system must make an
external LDAP call to check every level in the scope, from the top to the bottom.

Foreign Files

Similar to the scoping rules described above, you can also reference files in separate environments serviced by a
different Dali. This allows aread-only reference to remote files (both logical files and superfiles).

NOTE: If LDAP authentication isenabled on the foreign Dali, the user's credentials are verified before processing
the file access request. If LDAP file scope security is enabled on the foreign Dali, the user's file access
permissions are also verified.

The syntax looks like this;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
86

ECL Language Reference
Record Structures and Files

'~foreign::<dali-ip>::<scope>::<tail>'
For example,

M/Fi | e : =DATASET("' ~f orei gn: : 10. 150. 50. 11: : trai ni ng: : thor:: nyfile',
RecSt ruct, FLAT) ;

gives read-only access to the remote training: :thor::myfile file in the 10.150.50.11 environment.

Landing Zone Files

Y ou can also directly read and writefiles on alanding zone (or any other | P-addressable box) that have not been sprayed
to Thor. The landing zone must be running the dafileserv utility program. If the box is a Windows box, dafileserv
must be installed as a service.

The syntax looks like this:

'~file::<LZ-ip>::<path>::<filename>'

For example,

M/Fi |l e : =DATASET(' ~file::10.150.50.12::c$::training::inport::nmyfile',RecStruct, FLAT);
gives access to the remote c$/training/import/myfile file on the linux-based 10.150.50.12 landing zone.

ECL logical filenames are case insensitive and physical names default to lower case, which can cause problems when
the landing zone is a Linux box (Linux is case sensitive). The case of characters can be explicitly uppercased by
escaping them with aleading caret ("), asin this example:

M/Fi | e : =DATASET(' ~fil e::10. 150. 50. 12: : c$: : ~Advanced E*rC L: : nyfil e', RecSt ruct, FLAT) ;

gives access to the remote c$/AdvancedECL/myfile file on the linux-based 10.150.50.12 landing zone.

Dynamic Files

In Roxie queries (only) you can a so read files that may not exist at query deployment time, but that will exist at query
runtime by making the filename DY NAMIC.

The syntax looks like this:
DYNAMIC('<filename>")

For example,
M/Fi | e : =DATASET(DYNAM C(' ~trai ni ng: :inmport::myfile'), RecStruct, FLAT);

This causes the file to be resolved when the query is executed instead of when it is deployed.

Temporary SuperFiles

A SuperFile is a collection of logical files treated as a single entity (see the Super File Overview article in the Pro-
grammer's Guide). You can specify atemporary SuperFile by naming the set of sub-files within curly braces in the
string that names the logical file for the DATASET declaration. The syntax looks like this:

DATASET('{ listoffiles} ', recstruct, THOR);

listoffiles A comma-delimited list of the set of logical filesto treat as a single SuperFile. The logical filenames must
follow the ruleslisted above for logical filenames with the one exception that the tilde indicating scope name override
may be specified either on each appropriate file in thelist, or outside the curly braces.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
87

ECL Language Reference
Record Structures and Files

For example, assuming the default scope nameis "thor," the following examples both define the same SuperFile:

M/Fi |l e : =DATASET(' {in::filel,
in::file2,
~train::in::file3}'),
RecSt ruct, THOR) ;

M/Fi | e : =DATASET(' ~{thor::in::file1l,
thor::in::file2,
train::in::file3}'),

RecSt ruct, THOR) ;

Y ou cannot use this form of logical filename to do an OUTPUT or PERSIST; thisform is read-only.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
88

ECL Language Reference
Record Structures and Files

Implicit Dataset Relationality

Nested child datasetsin aDataRefinery (Thor) or Rapid Data Delivery Engine (Roxie€) cluster areinherently relational,
since al the parent-child data is contained within a single physical record. The following rules apply to all inherent
relationships.

The scope level of aparticular query is defined by the primary dataset for the query. During the query, the assumption
isthat you are working with a single record from that primary dataset.

Assuming that you have the following relational structure in your database:

Househol d Par ent
Per son Chil d of Househol d
Account s Chil d of Person, Grandchild of Househol d

This means that, at the primary scope level:

a) All fieldsfrom any filethat hasa 1:M relationship with the primary fileare available. That is, all fieldsin any parent
(or grandparent, etc.) record are available to the child. For example, if the Person dataset is the primary scope, then
all the fieldsin the Household dataset are available.

b) All child datasets (or grandchildren, etc.) can be used in sub-queriestofilter the parent, aslong asthe sub-query uses
an aggregate function or operates at the level of the existence of a set of child records that meet the filter criteria (see
EXISTS).Y ou can use specific fields from within a child record at the scope level of the parent record by the use of
EVALUATE or subscripting ([]) to aspecific child record. For example, if the Person dataset isthe primary scope, then
you may filter the set of related Accountsrecords and check to seeif you'vefiltered out all therelated Accountsrecords.

c) If adataset is used in a scope where it is not a child of the primary dataset, it is evaluated in the enclosing scope.
For example, the expression:

Househol d(Per son(per sonage > AVE(Per son, per sonage))

means "househol ds contai ning people whose age is above the average age for the household.” It does not mean "house-
holds containing people whose age is above the average for all the households." This is because the primary dataset
(Household) encloses the child dataset (Person), making the evaluation of the AVE function operate at the level of
the persons within the household.

d) An attribute defined with the STORED() workflow service is evaluated at the global level. Itisan error if it cannot
be evaluated independently of other datasets. This can lead to some slightly strange behaviour:

AveAge : = AVE(Person, personage) ;
M/Houses : = Househol d(Per son(per sonage > aveAge));

means "househol ds containing people whose age is above the average age for the household." However,

AveAge : = AVE(Person, personage) : STORED(' AveAge');
MyHouses : = Househol d(Per son(per sonage > aveAge));

Means "households containing people whose age is above the average for all the households." This is because the
AveAge attribute is now evaluated outside the enclosing Household scope.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
89

ECL Language Reference
Alien Data Types

Alien Data Types

TYPE Structure

TypeName := TYPE

functions;

END;

TypeName The name of the TY PE structure.

functions Function Attribute definitions. There are usually multiple functions.

The TY PE structure defines a series of functionsthat areimplicitly invoked when the TypeName is subsequently used
in a RECORD structure as a value type. Parameters may be passed to the TY PE structure Attribute which may then
be used in any of the function definitions. To pass the parameters, simply append them to the TypeName used in the
RECORD structure to define the value type for the field.

A TYPE structure may only contain function definitions from the the list of available Special Functions (see TYPE
Structure Special Functions).

Example:

STRINAA ReV(STRINGA S) := S[4] + S[3] + §[2] + S[1];
EXPORT ReverseString4 : = TYPE
EXPORT STRING4 LOAD(STRIN S) := Rev(S);
EXPORT STRING4 STORE(STRIN® S) := Rev(S);

END;

NeedC(| NTEGER | en) := TYPE
EXPORT STRING LOAD(STRING S) :='C + S[1..len];
EXPORT STRI NG STORE(STRING S) := S§[2..len+1];
EXPORT | NTEGER PHYSI CALLENGTH(STRING S) : = | en;

END;

Scalelnt := TYPE
EXPORT REAL LQOAD(| NTEGER4 |)
EXPORT | NTEGER4 STORE(REAL R)

I / 100;
ROUND(R * 100);

END;
R : = RECORD
ReverseString4 F1;
/! Defines a field size of 4 bytes. When R F1 i s used,
/1 the ReverseString4.Load function is called passing
/1 in those four bytes and returning a string result.
NeedC(5) F2;
/] Defines a field size of 5 bytes. When R F2 is used,
/'l those 5 bytes are passed in to NeedC. Load (along with
/1 the length 5) and a 6 byte string is returned.
Scal el nt F3;
/Il Defines a field size of 4. Wien R F3 is used, the
[/l Scal elnt.Load function returns the nunber / 100.
END;

See Also: RECORD Structure, TY PE Structure Special Functions

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
90

ECL Language Reference
Alien Data Types

TYPE Structure Special Functions

LOAD

EXPORT Logical Type LOAD(Physical Type alias) := expression;

Logical Type The value type of the resulting output of the function.
Physical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

L OAD defines the callback function to be applied to the bytes of the record to create the data value to be used in the

computation. This function defines how the system reads the data from disk.

STORE

EXPORT Physical Type STORE(Logical Type alias) := expression;

Physical Type The value type of the resulting output of the function.
Logical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

STORE defines the callback function to be applied to the computed value to store it within the record. This function

defines how the system writes the data to disk.

PHYSICALLENGTH

EXPORT INTEGER PHYSICALLENGTH (type alias) := expression;

type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

PHYSICALLENGTH defines the callback function to determine the storage requirements of the logical format in
the specified physical format. This function defines how many bytes the data occupies on disk.

MAXLENGTH

EXPORT INTEGER MAXLENGTH := expression;

‘ expression ‘An integer constant defining the maximum physical length of the data.

MAXLENGTH defines the callback function to determine the maximum physical length of variable-length data.

GETISVALID

EXPORT BOOLEAN GETISVALID(Physical Type alias) := expression;

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

91

ECL Language Reference
Alien Data Types

Physical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

GETISVALID defines the callback function to determine that data values are in the specified physical format.

Example:

EXPORT NeedC(| NTEGER | en) := TYPE
EXPORT STRING LOAD(STRING S) :='C + S[1..len];
EXPORT STRING STORE(STRING S) := S[2..len+1];
EXPORT | NTEGER PHYSI CALLENGTH(STRING S) : = | en;
EXPORT | NTEGER MAXLENGTH(STRING S) : = |l en;

EXPORT BOOLEAN GETI SVALID(STRING S) := §[1] <> 'C ;

END;

/l delimted string data type
EXPORT dstring(STRI NG del) := TYPE
EXPORT | NTEGER PHYSI CALLENGTH(STRI NG s) : =
Std. Str. Fi nd(s, del)+l engt h(del) -1;
EXPORT STRI NG LOAD(STRING s) : =
s[1..Std. Str. Fi nd(s, del)-1];
EXPORT STRI NG STORE(STRING s) := s + del ;
END;

See Also: TY PE Structure

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
92

ECL Language Reference
Parsing Support

Parsing Support
Parsing Support

Natural Language Parsing isaccomplished in ECL by combining pattern definitionswith an output RECORD structure
(or TRANSFORM function) specifically designed to receive the parsed values, then using the PARSE function to
perform the operation.

Pattern definitions are used to detect "interesting” text within the data. Just as with all other attribute definitions, these
patterns typically define specific parsing elements and may be combined to form more complex patterns, tokens, and
rules.

The output RECORD structure (or TRANSFORM function) defines the format of the resulting recordset. It typically
contains specific pattern matching functions that return the "interesting” text, its length or position.

The PARSE function implements the parsing operation. It returns a recordset that may then be post-processed as
needed using standard ECL syntax, or simply output.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
93

ECL Language Reference
Parsing Support

PARSE Pattern Value Types

There are three value types specifically designed and required to define parsing pattern attributes:

PATTERN patternid := parsepattern;

patternid The attribute name of the pattern.

par sepattern The pattern, very similar to regular expressions. This may contain other previously
defined PATTERN attributes. See Par sePattern Definitions below.

The PATTERN value type defines a parsing expression very similar to regular expression patterns.

TOKEN tokenid := parsepattern;

tokenid The attribute name of the token.

par sepattern The token pattern, very similar to regular expressions. This may contain PATTERN
attributes but no TOKEN or RULE attributes. See Par sePatter n Definitions bel ow.

The TOKEN vauetype definesaparsing expression very similar toaPATTERN, but once matched, the parser doesn't
backtrack to find alternative matches asit would with PATTERN.

RULE [(recstruct)] ruleid := rulePattern;

recstruct Optional. The attribute name of a RECORD structure attribute (valid only when the
PARSE option is used on the PARSE function).

ruleid The attribute name of the rule.

rulePattern Therule pattern, very similar to regular expressions. This may contain PATTERN at-
tributes, TOKEN attributes, or RULE attributes. See Par sePatter n Definitionsbelow.

The RULE value type defines a parsing expression containing combinations of TOKENS. If a RULE definition con-
tains a PATTERN it isimplicitly converted to a TOKEN. Like PATTERN, once matched, the parser backtracks to
find alternative RULE matches.

If the PARSE option is present on the PARSE function (thereby implementing tomita parsing for the operation), each
alternative RULE rulePattern may have an associated TRANSFORM function. The different input patterns can be
referred to using $1, $2 etc. If the pattern has an associated recstruct then $1 is arow, otherwise it isastring. Default
TRANSFORM functions are created in two circumstances:

1. If there are no patterns, the default transform clears the row. For example:

RULE(nmyRecord) :=; //enpty expression = cleared row

2. If thereis only asingle pattern with an associated record, and that record matches the type of the
rule being defined. For example:

RULE(nmyRecord) e0 := "' (' USE(nyRecord, 'expression') ')';
ParsePattern Definitions

A parsepattern may contain any combination of the following elements:

pattern-name The name of any previously defined PATTERN attribute.
(pattern) Parentheses may be used for grouping.
patternl pattern2 Patternl followed by pattern2.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
94

ECL Language Reference
Parsing Support

'string’ A fixed text string, which may contain escaped octal string control characters (for
example, CtrlZ is'\032).

FIRST Matches the start of the string to search. Thisis similar to the regular expression »
token, which is not supported.

LAST Matches the end of the string to search. This is similar to the regular expression $
token, which is not supported.

ANY Matches any character.

REPEAT (pattern) Repeat the pattern any number of times. The regular expression syntax pattern* is

supported as a shorthand for REPEAT (pattern).

REPEAT (pattern, expres-
sion)

Repeat the pattern expression times. The regular expression syntax pattern* <count>
is supported as a shorthand for REPEAT (pattern,expression), but the regular expres-
sion bounded repeats syntax pattern{ expression} is not.

REPEAT (pattern, low, ANY
[LMIN])

Repeat the pattern low or more times (with the MIN option making it a minimal
match). The regular expression syntax pattern+ is supported as a shorthand for RE-
PEAT (pattern,low,ANY), but the regular expression bounded repeats syntax pat-
tern{expression ,} isnot.

REPEAT (pattern, low, high)

Repeat the pattern from low to high times. The regular expression bounded repeats
syntax pattern{low,high} is not supported.

OPT (pattern)

An optional pattern. The regular expression syntax pattern? is supported as a short-
hand for OPT (pattern).

patternl OR pattern2

Either patternl or pattern2. The regular expression syntax patternl | pattern2 is sup-
ported as a shorthand for OR.

[list-of-patterns]

A comma-delimited list of alternative patterns, useful for string sets. Thisisthe same
asOR.

patternl [NOT] IN pattern2

Doesthetext matched with patternl al so match pattern2? Patternl [NOT] = pattern2
and patternl != pattern2 are the same as using IN, but may make more sensein some
situations.

patternl [NOT] BEFORE
pattern2

Check if the given pattern2 does [not] follow patternl. Pattern2 is not consumed
from the input.

patternl [NOT] AFTER pat-
tern2

Check if the given pattern2 does [not] precede patternl. Pattern2 does not consume
any input. It must also be a fixed length.

pattern LENGTH (range)

Check whether the length of a pattern isin the range. Range can have the form <val-
ue>,<min>..<max>,<min>.. or ..<max> So "digit*3 NOT BEFORE digit" could be
represented as"digit* LENGTH(3)." Thisis more efficient, and digit* can be defined
asatoken. "digit* LENGTH(4..6)" matches 4,5 and 6 digit sequences.

VALIDATE(pattern, is-
ValidExpression)

Evaluate isValidExpression to check if the patternisvalid or not. isValidExpression
should use MATCHTEXT or MATCHUNICODE to refer to the text that matched
the pattern. For example, VALIDATE(apha*, MATCHTEXT[4]='Q) is equivalent
to alpha* = ANY*3'Q ANY* or more usefully: VALIDATE(al pha* ,isSurnameSer-
Vice(MATCHTEXT));

VALIDATE(pattern, is-
ValidAsciiExpression, is-
ValidUnicodeExpression)

A two parameter variant. Use the first isValidAsciiExpression if the string being
searched is ASCII; use the second if it is Unicode.

NOCA SE(pattern)

Matches the pattern case insensitively, overriding the CASE option on the PARSE
function. This may be nested within a CASE pattern.

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

95

ECL Language Reference
Parsing Support

CASE(pattern)

Matches the pattern case sensitively, overriding the NOCA SE option on the PARSE
function. This may be nested within a NOCASE pattern.

pattern PENALTY (cost)

Associate a penalty cost with this match of the pattern. This can be used to recover
from grammars with unknown words. This requires use of the BEST option on the
PARSE operation.

TOKEN(pattern)

Treat the pattern as a token.

PATTERN('regular expres-
sion’)

Define a pattern using aregular expression built from
the following supported syntax elements:

x) Grouping (not used for matching)

Xly Alterativesx or y

Xy Concatenation of x and y.

X* X*? Zero or more. Greedy and minimal versions.
X+ X+7? One or more. Greedy and minimal versions.
X?X?7? Zero or one. Greedy and minimal versions.

x{m} x{m} x{m,n} Bounded repeats, also minimal versions
[0-9abcdef] A set of characters
(may use” for exclusion list)
(?=..) (?...) Look ahead assertion
(7<=..) (<!...) Look behind assertion

Escape sequences can be used to define UNICODE Character ranges.
The encoding is UTF-16 Big Endian.

For example:

PATTERN AnyChar := PATTERN(U'[\u0001-\u7fff]");

The following character class expressions are supported
(inside sets):

[:anum:] [:cntrl:] [:lower:] [:upper:] [:space]
[:apha] [:digit:]] [:print:] [:blank:] [:graph:]
[:punct:] [:xdigit:]

Regular expressions do not support:
A $to mark the beginning/end of the string
Collating symbols [.ch.]
Equivalenceclass [=e=]

USE([recstruct ,] 'symbol-
name')

Specifiesusing apattern defined later with the DEFINE('symbolname’) function. This
creates aforward reference, practical only on RULE patterns for tomita parsing (the
PARSE option is present on the PARSE function).

SELF

References the pattern being defined (recursive). Thisis practical only in RULE pat-
terns for tomita parsing (the PARSE option is present on the PARSE function).

Examples:

rs := RECORD

STRI NGLOO i ne;

END;

ds : = DATASET([{'the fox;

PATTERN ws : = PATTERN(' [

and the hen'}], rs);

\t\r\n]');

PATTERN Al pha : = PATTERN(' [A-Za-z]');

PATTERN Word : = Al pha+;
PATTERN Article :=['the'

. AT

PATTERN Just AWord : = Word PENALTY(1);
PATTERN not Hen : = VALI DATE(Word, MATCHTEXT != 'hen');

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

96

ECL Language Reference
Parsing Support

PATTERN NoHenWord : = not Hen PENALTY(1);
RULE NounPhraseConponentl1 := JustAWord | Article ws Wrd;
RULE NounPhr aseConponent?2 := NoHenWrd | Article ws Wrd;
psl : = RECORD

out 1 : = MATCHTEXT(NounPhr aseConponent 1) ;
END;

ps2 : = RECORD
out 2 : = MATCHTEXT(NounPhr aseConponent 2) ;

END;

pl : = PARSE(ds, |ine, NounPhraseConponentl1, psl, BEST, MANY, NOCASE);
p2 := PARSE(ds, |ine, NounPhraseConponent?2, ps2, BEST, MANY, NOCASE);
QUTPUT(pl) ;

QUTPUT(p2) ;

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

© 2020 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
97

ECL Language Reference
Parsing Support

NLP RECORD and TRANSFORM Func-
tions

The following functions are used in field definition expressions within the RECORD structure or TRANSFORM func-
tion that defines the result set from the PARSE function:

MATCHED([patternreference])

MATCHED returnstrue or false asto whether the patter nreference found amatch. If the patter nreference is omitted,
it indicates whether the entire pattern matched or not (for use with the NOT MATCHED option).

MATCHTEXT [(patternreference) |

MATCHTEXT returns the matching ASCI| text the patter nreference found, or blank if not found. If the patter nref-
erence isomitted, MATCHTEXT returns all matching text.

MATCHUNICODE(patternreference)

MATCHUNICODE returns the matching Unicode text the patter nreference found, or blank if not found.
MATCHLENGT H (patter nreference)

MATCHLENGTH returnsthe number of charactersin the matching text the patter nreferencefound, or O if not found.
MATCHPOSI TION(patternreference)

MATCHPOSITION returnsthe position within thetext of thefirst character in the matching text the patternreference
found, or 0 if not found.

MATCHROW (patternreference)

MATCHROW returns the entire row of the matching text the patternreference found for aRULE (valid only when
the PARSE option is used on the PARSE func